聚醚共聚酰胺膜的制备与分离性能研究
作者:冯世超,任吉中,李晖,花开胜,李新学,邓麦村
单位: 中国科学院大连化学物理研究所,膜技术国家工程研究中心,大连 116023
关键词: 二氧化碳分离;均质膜;聚醚共聚酰胺
出版年,卷(期):页码: 2013,33(4):53-58

摘要:
以橡胶态聚醚共聚酰胺(Pebax1074)嵌段共聚物为膜材料,采用流延法制备了亲水性无缺陷的Pebax1074均质膜.由于Pebax1074嵌段高分子中的聚环氧乙烷(PEO)链段对CO2分子的亲和性,Pebax1074膜对CO2/非极性气体分离体系有较高的分离性能.CO2渗透系数由于增塑作用随膜两侧压差的增大而显著增大,且温度越低增塑作用越大;而N2、CH4和H2等非极性气体的渗透系数由于流体静力学压力效应随膜两侧压差增大略有减小,温度越高流体静力学压力效应越弱.N2、CH4、H2和CO2在Pebax1074膜中的渗透系数均可用Arrhenius方程描述,且随着压力的升高,CO2的渗透活化能下降,而N2、CH4和H2非极性气体的渗透活化能升高.?
Block copolymer poly (amide-12-b-ethylene oxide) (Pebax1074) is used to prepare the hydrophilic dense membrane by casting method. Due to the specific affinity of PEO segment to polar gas CO2, Pebax1074 membrane shows high CO2 permeability and CO2/light gas selectivity. Due to CO2 induced plasticization effect, the CO2 permeability increases with increasing pressure, which is more obvious at low temperature. But the permeabilities of N2、CH4 and H2 decrease with increasing pressure due to the hydrostatic pressure effect, which decreases with increasing temperature.. The relationship between gas permeability and operating temperature can be described by Arrhenius equation. With increasing pressure, the activation energies of permeation for N2、CH4 and H2 decrease, but that for CO2 increases. 
冯世超(1984-),女,河北邯郸人,博士,从事膜分离过程研究

参考文献:
[1] Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes [J]. J Membr Sci, 2010, 359:126–139
[2] 杨爱军,张丽红,孙丽萍,程 俊.膜技术在天然气分离中的应用,辽宁化工,2008,37(4):245-248
[3] Brunetti A, Scura F, Barbieri G, Drioli E, Membrane technologies for CO2 separation, J Membr Sci, 2010, 359:115–125.
[4] Lin H, Freeman B D, Materials selection guidelines for membranes that remove CO2 from gas mixtures, J Mol Struct, 2005, 739:57–74.
[5] Lin H, Freeman B D. Gas solubility, diffusivity and permeability in poly(ethylene oxide) [J]. J Membr Sci, 2004, 239:105–117.
[6] Blume I, Pinnau I. Composite membrane, method of preparation and use [P]. US Pat: 4963165, 1990-10-16.
[7] Bondar V I, Freeman B D, Pinnau I. Gas transport properties of poly (ether-b-amide) segment block copolymers [J]. J Polym Sci, B: Polym Phys, 2000,38:2051-2062
[8] Liu L, Chakma A, Feng X. Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen [J]. Chem Eng J, 2004, 105:43-51.
[9] Kim J H, Ha S Y, Lee Y M. Gas permeation of poly (amide-6-b-ethylene oxide) copolymer [J]. J Membr Sci, 2001, 190:179-193.
[10] Car A, Stropnik C, Yave W, Peinemann K V, PEG modi?ed poly (amide-b-ethylene oxide) membranes for CO2 separation, J Membr Sci, 2008, 307:88–95.
[11] Yave W, Car A, Funari S S, Nunes S P, Peinemann K V. CO2-Philic Polymer Membrane with Extremely High Separation Performance[J]. Macromolecules, 2010,43:326-333.
[12] Reijerkerka S R., Knoef M H., Nijmeijer K, et al. Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes[J]. J Membr Sci, 2010, 352:126-135.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号