一套可精确测量气体溶解度装置的设计与搭建
作者:赵博智 ,李培,曹兵
单位: 北京化工大学,材料科学与工程学院,北京,100029
关键词: 气体吸附测量;双体积压力衰减法;体积标定;吸附等温线
出版年,卷(期):页码: 2016,36(5):111-115

摘要:
 本文基于双体积压力衰减法,设计并搭建一套可精确测量气体溶解度的装置。该装置可测量不同气体(He、H2、N2、O2、CH4、CO2、C2H4、C2H6、C3H6、C3H8等)在有机物,无机物、非挥发性液体等材料中的溶解度。设备的应用温度为室温-50℃,测量压力范围是0-1000 psi (0-66 atm)。该设备采用计算机自动采集数据,因此具有极高的测量精度(±5%)。在标定过程中,采用Virial模型计算气体的活度,并用氦气作为标定气体,通过改变样品室的体积并测量样品室与储藏室的体积比,可精确计算出它们的体积。在测量聚合物气体吸附量过程中,采用压力衰减法,通过测量不同压力下,聚合物达到吸附平衡时吸附室的压力,从而计算得到聚合物的吸附等温线,并与先前文献中报道的数据进行比较,测量结果吻合,验证了该设备的测量结果具有极高的准确性和可靠性。
 Based on dual-volume pressure decay method, we designed and built an equipment which could measure the gas solubility accurately(He、H2、N2、O2、CH4、CO2、C2H4、C2H6、C3H6、C3H8 etc.)in various materials such as organics, inorganics and nonvolatile liquids. The operating temperature of the device ranged from ambient temperature to 50℃, and applicable pressure, 0 to 1000psi (0-66atm). Using computer data acquisition system, the device presented with high accuracy (±5%). Virial equation was used to estimate the gas activity in the volume calibration process. Accurate volume of each chamber was determined by changing volume of the sample chamber and the ratios of two volumes as well (taking He as calibration gas). Gas sorption in polymers was measured via the dual-volume pressure decay method. And the sorption isotherm curve of gases was obtained by measuring the equilibrium pressure of each chamber. The measurement result agreed well with the previously reported data, confirming that the equipment we designed above had high accuracy and reliability.
第一作者简介:赵博智(1990-),男,辽宁省沈阳市人,硕士生,主要从事气体分离膜技术的研究,E-mail:stifler901002@126.com *通讯作者,E-mail:lipei@mail.buct.edu.cn;bcao@mail.buct.edu.cn

参考文献:
 [1] Newitt D M,Weale K E. Solution and diffusion of gases in polystyrene at high pressures. [J].  Chem Soc (London),1948,310:1541-1549。 
[2] Lundberg J L,Wilk M B,Huyett M J. Sorption studies using automation and computation. [J].  Ind Eng Chem Fundam,1963,2(1):37-43。
[3] Koros W J,D R Paul. Design considerations for measurement of gas sorption in polymers by pressure decay. [J]. Polym Sci Part B: Polym Phys,1976,14:1903–1907。
[4] Koros W J,G K Fleming. Membrane-based gas separation. [J]. Membr Sci,1993,83 (93): 1–80。
[5] Bondar V I,B D Freeman,I J Pinnau. Gas transport properties of poly(ether-b-amide) segmented block copolymers. [J]. Polym Sci Part B: Polym Phys,1999,37:2463–2475。
[6] LI Pei,Chung T S,Paul D R. Gas sorption and permeation in PIM-1. [J]. Membr Sci,2013,432:0–57。
[7] LI Pei,Paul D R,Chung T S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. [J]. Green Chem,2012,14:1052–1063。
[8] Merkel T C,Bondar V I,Nagai K,et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). [J]. Polym Sci Part B: Polym Phys,2000,38:415–434。
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号