板式钾离子筛膜的合成及其电驱分离性能
作者:齐珊珊,袁俊生,张成凯
单位: 1.河北工业大学海洋科学与工程学院,天津 300130;2.河北工业大学化工学院,天津 300130;3.海水资源高效利用化工技术部教育部工程研究中心,天津 300130
关键词: 板式钾离子筛膜;电驱分离;浓海水提钾
出版年,卷(期):页码: 2017,37(1):27-35

摘要:
 采用二次水热合成法,在板式α-Al2O3基膜上,以n(Si):n(Al):n(模板剂):n(KOH):n(H2O)= 36.8:8:1:24.8:771为原料配比,在200℃下合成钾离子筛膜,并考察了晶化时间、模板剂、合成次数对钾离子筛膜的影响。利用XRD、SEM、EDS和单一气体渗透测试进行表征,表明成功合成厚度约为30μm的钾离子筛膜,其H2渗透率为20.6×10-6mol·m-2·s-1·Pa-1,N2渗透率为8.1×10-6mol·m-2·s-1·Pa-1,α(H2/N2)=2.54,表明该膜致密均匀。电驱动实验结果表明,K+、Na+、Mg2+和Ca2+的渗透通量分别为852.61(平均值) mmol/(m2·h)、112.38 mmol/(m2·h)、12.44 mmol/(m2·h)、5.26 mmol/(m2·h),钾离子筛膜对钾离子的选择性系数分别为αK/Na=7.25、αK/Mg=69.85、αK/Ca=166.06;离子通量随着浓度、电压和温度的增大均增大;离子选择性随着电压的增大而增大,而离子选择性随着浓度和温度的增大而降低。结果表明,在直流电场的作用下,板式钾离子筛膜对钾离子具有良好的选择分离性能。
 α-Al2O3 supported potassium ionic sieve membrane was synthesized by the secondary hydrothermal growth method with the synthetic liquid ratio of n(Si):n(Al):n(template):n(KOH): n(H2O)= 36.8:8:1:24.8:771 under 200℃. Further studies on the synthetic time, template agent and number of synthesis of the influence on the potassium ion sieve membrane crystal growth were carried. Then it was characterized by XRD, SEM, EDS and gas permeation. It turns out that the potassium ion sieve membrane about 30μm thickness was synthesized successfully. The permeability of H2 is 20.6×10-6mol·m-2·s-1·Pa-1 while N2 8.1×10-6mol·m-2·s-1·Pa-1. And the separation factor of H2/N2 is 2.54.The permeation flux of K+ , Na+ , Ca2+ and Mg2+ are 852.61mmol/(m2·h), 112.38mmol/(m2·h), 12.44mmol/(m2·h), 5.26mmol/(m2·h) respectively in the electric drive experiments. The separation factors of K+/Na+, K+/Mg2+ and K+/Ca2+ are equal 7.25, 69.85, 166.06. Ion flux are increased with the increase of concentration, voltage and temperature. Ion selective are decreased with the increase of concentration and temperature but increased with voltage. The results show that the disc-shaped ion sieve membrane for the separation of potassium ion has a good performance under the effect of DC field.
作者简介:齐珊珊(1991-),女,河南省滑县,硕士,河北工业大学,研究方向:海洋化学资源利用与环境保护,E-mail:13652108680@163.com 通讯作者:袁俊生(1961-),男,博士,教授,研究方向:海水资源综合利用,E-mail:jsyuan2012@126.com

参考文献:
 [1] 马鸿文,苏双青,刘浩,等.中国钾资源与钾盐工业可持续发展[J].地学前缘,2010,17(1):294-310.
[2] 杨卉芃,曹菲.世界钾资源研究系列之一——资源概况及供需分析[J].矿产保护与利用,2015,(1):75-78.
[3] 袁俊生,韩惠如.海水提钾技术研究进展[J].河北工业大学学报,2004,33(2):140-147.
[4] Zhao Lin, Chen Yuanxin, Wang Bo, et al. Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from ?ue gas[J]. Journal of Membrane Science, 2016, 498:1-13.
[5] Zhou Liang, Yang Jianhua, Li Gang, et al. Highly H2 permeable SAPO-34 membranes by steam-assisted conversion seeding [J]. International journal of hydrogen energy, 2014, 39:14949-14954.
[6] Chisholm Nicholas O., Anderson Grace C., McNally Jordan F., et al. Increasing H2/N2 separation selectivity in CHA zeolite membranes by adding a third gas [J]. Journal of Membrane Science, 2015, 496:118-124.
[7] Maghsoudi Hafez, Soltanieh Mohammad. Simultaneous separation of H2S and CO2 fromCH4 by a high silica CHA-type zeolite membrane [J]. Journal of Membrane Science, 2014, 470:159-165.
[8] Chai Lijun, Li Huazheng, Zheng Xiaoqin, et al. Pervaporation separation of ethanol–water mixtures through B-ZSM-11 zeolite membranes on macroporous supports [J]. Journal of Membrane Science, 2015, 491:168-175.
[9] Shu X, Wang X, Kong Q, et al. N Xu.High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water [J]. Industrial and Engineering Chemistry Research,2012,51:12073-12080
[10] Chen Zan, Yin Dehong, Wang Jinqu, et al. Functional defect-patching of a zeolite membrane for the dehydration of acetic acid by pervaporation[J].Journal of Membrane Science, 2011,369 :506-513.
[11] Zhu Bo, Myat Darli T., Shin Jin-Wook, et al. Application of robust MFI-type zeolite membrane for desalination of saline wastewater [J]. Journal of Membrane Science, 2015, 475:167-174.
[12] 柳学芳.ZSM-5分子筛膜制备方法的研究进展[J].石油化工应用,2014,33(12)13-16.
[13] 苑昊,厉刚.FeCrAl丝网负载FAU沸石膜的制备及其催化性能[J].燃料化学学报, 2012,40:558-563.
[14] 王东超,王晓东,黄伟. FAU型沸石膜的研究进展[J].化工新型材料,2014,42(6) 32-34.
[15] 梅金凤,周志辉,刘红,等. NaA 沸石膜的制备及在一氯甲烷脱水中的应用[J].硅酸盐学报,2012,40(9)1363-1368.
[16] 游在鑫,李邦民,王金渠. NaY沸石膜的合成及用于渗透汽化分离苯-环己烷[J].石油化工,2007,36(8)804-807.
[17] 王季平,刘丽娟,邵国林,等.二次生长法FAU型沸石膜的合成与表征[J].膜科学与技术,2007,27(6)9-12.
[18] 周亮,杨建华,王金渠,等.蒸汽相转化涂晶法SAPO-34分子筛膜的制备及表征[J].无机材料学报,2015,30(3)294-298.
[19] 金鸽,周志辉,刘红,等.无模板剂ZSM-5沸石膜在乙酸乙酯渗透汽化脱水中的应用[J].石油学报(石油加工),2015,31(1)31-37.
[20] Kazemimoghadam Mansoor, Mohammadi Toraj. Synthesis of MFI zeolite membranes for water desalination [J].Desalination, 2007, 206: 547-553.
[21] Li L.X., Dong J.H., Tina M. Desalination by reverse osmosis using MFI zeolite membrane [J]. Journal of Membrane Science, 2004, 243:401-404.
[22] Yuan Junsheng, Zhao Yingying, Li Qinghui. Preparation of potassium ionic sieve membrane and its application on extracting potash from seawater [J]. Separation and Purification Technology, 2012, 99:55-60.
[23] 卢亚哲.钾离子高效吸附剂的合成研究[D]:[学位论文].天津:河北工业大学,2005.45-48.
[24] 袁俊生,郭兆寿,张林栋.新型钾分子筛的表征及其对K+的交换性能[J].过程工程学报,2006,6(6):903-906.
[25] 张帆.钾离子筛膜的合成及其性能测定[D]:[学位论文].天津:河北工业大学,2008.35-45.
[26] 袁俊生,刘崇国.钾离子筛膜的合成[J].膜科学与技术,2010,30(3):27-29.
[27] Nikolay Kosinov, Jorge Gascon, Freek Kapteijn, et al.Recent developments in zeolite membranes for gas separation[J].Journal of Membrane Science, 2016,499:65-79.
[28] 孙炜,陈中,黄素逸.浓度对NaCl水溶液的分子动力学模拟[J].武汉理工大学学报,2005,27(7):26-29.
[29] 袁俊生,包捷.钾、钠、氯离子水化现象的分子动力学模拟[J].计算机与应用化学,2009,26(10):1295-1299.
[30] 李非.钙、镁、氯离子水化现象的研究[D]:[学位论文].天津:河北工业大学,2011.45-49.
[31] 谢德华,施周,陈世洋,等.基于唐南渗析原理阳离子交换膜对Cu2+、Mn2+、Zn2+去除能力的研究[J].环境科学,2010,31(9):2100-2104.
[32] 张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社,1986.27.
[33] Yamaguchi T.,Ohzono H.,Yamagami M., et al.Ion hydration in aqueous solutions of lithium chloride, nickel chloride, and caesium chloride in ambient to supercritical water. Journal of Molecular Liquids, 2010, 153:2-8.
[34] 袁俊生,杨永春.钠型斜发沸石在K+-Na+-NH4+和K+-Na+-Ca2+水溶液体系中的离子交换平衡[J].离子交换与吸附,2008,24(6): 496-503.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号