节能电渗析用于海水纳滤产水二级脱盐 研究
作者:刘颖,王俐丹,王建友
单位: 南开大学环境科学与工程学院,天津300350
关键词: 电渗析;脱盐;运行参数;能耗
出版年,卷(期):页码: 2018,38(3):97-103

摘要:
 针对主流海水淡化工艺SWRO在高操作压力和高能耗等方面的缺陷,提出“纳滤/倒极电渗析(NF/EDR)”集成膜过程低能耗海水淡化新工艺。本文属于ED过程工艺优化部分的研究。其进水为NF产水,电导率为8790μS/cm,ED用膜为常规异向离子交换膜,以脱盐率和能耗为主要指标,对ED运行参数和工艺进行综合优化。结果表明,当淡水流量为150L/h,浓水流量为120L/h,采用一级两段膜堆构型,两段膜对数比为27/23时,ED系统的脱盐率可达90%,本体吨水能耗低至0.98KWh。研究表明基于节能ED 工艺与高脱盐NF工艺集成,有望实现低能耗海水淡化。
 For the high pressure and high energy consumption of Seawater reverse osmosis (SWRO) desalination technology, an energy-saving “NF/EDR” integrated membrane process for seawater desalination has been proposed in our study. This manuscript is the key study about the optimization of electrodialysis (ED) process. The feed water is the NF output with the conductivity of 8790 μS/cm and the adopted ED membranes are conventional heterogeneous ion exchange membranes. Taking the desalination rate and energy consumption as the main indicators, the ED operating parameters and process are comprehensively optimized. The results show that with the dilute stream flow of 150 L/h, concentrate stream flow of 120 L/h and the ED stack consisted of one stage with two passages, with the proportion of 27/23 in cell pairs, the desalination rate of ED process could be about 90% and the energy consumption was 0.98 KWh/(m3 produced water). Research shows that based on the integration between the energy-saving ED process and high desalination NF process, it is expected to achieve low-energy seawater desalination.
刘颖(1988-),女,内蒙古赤峰市,南开大学博士后,研究方向:膜分离技术,E-mail:chifengliuying@126.com. 通讯作者,E-mail: wangjy72@nankai.edu.cn.

参考文献:
 [1] 周栋, 傅寅翼, 薛立新等. 采用高效纳滤-低压反渗透集成膜工艺的海水淡化研究[J]. 膜科学与技术, 2016, 36(3):62-69.
[2] 郑智颖, 李凤臣, 李倩等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21):2344-2370.
[3] 郑晓英, 王翔. 三种主流的海水淡化工艺[J]. 净水技术, 2016(6):111-115.
[4] 代磊, 张奇峰, 张所波. 海水淡化反渗透复合膜材料的研究进展[J]. 水处理技术, 2015, 41(10):53-58.
[5] 王世昌, 王志, 解利昕等. 海水淡化—共识与创新[J]. 水处理技术, 2015(10):13-16.
[6] 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1):1-14.
[7] 薛喜东, 王建友, 刘红斌等. 太阳能中空纤维空气隙膜蒸馏海水淡化性能研究[J]. 膜科学与技术, 2016, 36(4):126-133.
[8] 徐国荣, 王生辉, 赵河立等. 海水淡化聚酰胺复合反渗透膜的发展趋势与展望[J]. 膜科学与技术,2015, 35(5):122-126.
[9] 徐建国, 尹华. 海水淡化反渗透膜技术的最新进展及其应用[J]. 膜科学与技术, 2014, 34(2):99-105.
[10] Grubert E A, Stillwell A S, Webber M E.Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites[J]. Desalination, 2014, 339(339):10-17.
[11] 解利昕, 李凭力, 王世昌. 海水淡化技术现状及各种淡化方法评述[J]. 化工进展, 2003, 22(10):1081-1084.
[12] 唐娜, 刘家祺, 马敬环等. 热致相分离法制备膜蒸馏用聚丙烯平板微孔膜[J]. 化工学报, 2004, 55(10):125-129.
[13] Luo J, Wan Y. Desalination of effluents with highly concentrated salt by nanofiltration: From laboratory to pilot-plant[J]. Desalination, 2013, 315(2):91-99. 
[14] Liu Y, Wang J. Energy-saving “NF/EDR” integrated membrane process for seawater desalination. Part II. The optimization of ED process[J]. Desalination, 2017, 422:142-152.
[15] 李卜义, 王建友. 浓海水处理及综合利用技术的新进展[J]. 化工进展, 2014, 33(11):3067-3074.
[16] 王建友, 王世昌, 傅学起. UF-EDI集成膜过程制备初级纯水[J]. 水处理技术, 2006, 32(9):48-51.
[17] Thampy S, Desale G R, Shahi V K, et al. Development of hybrid electrodialysis-reverse osmosis domestic desalination unit for high recovery of product water[J]. Desalination, 2011, 282(6):104-108.
[18] Sarkar S, Sengupta A K. A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: Process concept and laboratory evaluation[J]. Journal of Membrane Science, 2008, 324(1-2):76-84.
[19] Liu Y, Wang J, Sun X. Energy-saving "NF/EDR" integrated membrane process for seawater desalination Part I. Seawater desalination by NF membrane with high desalination capacity[J]. Desalination, 2016, 397:165-173.
[20] 李志敏, 曾秋苑, 李淳等. MSF/RO/ED海水淡化技术研究[J]. 材料导报, 2012, 26(9):125-128.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号