多巴胺接枝的GO-Al2O3膜对Na+/Mg2+的分离性能
作者:王晨颖,汪菊,漆虹
单位: (南京工业大学 膜科学技术研究所,材料化学工程国家重点实验室,南京 210009)
关键词: 氧化石墨烯;Al2O3管式膜;多巴胺;截留性能
出版年,卷(期):页码: 2018,38(5):55-61

摘要:
 以Al2O3管式膜作为载体,采用简单的浸浆法制备GO-Al2O3膜,考察了用多巴胺接枝和未用多巴胺接枝的GO-Al2O3膜对纯水渗透性能和一二价离子截留性能的影响。结果表明,GO成功地涂覆在Al2O3管式膜表面。用多巴胺接枝的GO-Al2O3膜的纯水通量为33 L/(m2·h·bar),比未用多巴胺接枝的GO-Al2O3膜下降了45%,相比较Al2O3膜降低了83%。在压力为3 bar,盐溶液浓度10 mM,膜面流速为1.3 m/s的条件下,Al2O3管式膜对四种无机盐溶液均无截留性能。多巴胺接枝GO-Al2O3膜和GO-Al2O3膜对四种盐溶液的截留顺序为:R(Na2SO4)>R(NaCl)>R(MgSO4)>R(MgCl2),并且多巴胺接枝GO-Al2O3膜对四种盐溶液的截留率,相对于GO-Al2O3膜,有了明显的提高。
 GO-Al2O3 membrane was fabricated on Al2O3 tubular support via dip-coating method. The effects of dopamine-grafted GO-Al2O3 membrane and GO-Al2O3 membrane on the permeation of pure water and rejection of monovalent and divalent ion were investigated. The results show that GO were successfully coated on the inner surface of Al2O3 tubular support. The pure water flux of dopamine-grafted GO-Al2O3 membrane was 33 L/(m2·h·bar), which was decreased by 45% and 83% from GO-Al2O3 membrane and Al2O3 tubular support, respectively. At the pressure of 3 bar, solution concentration of 10 Mm and membrane surface velocity of 1.3 m/s, Al2O3 tubular support had no rejection of four inorganic salt solutions. Dopamine-grafted GO-Al2O3 and GO-Al2O3 membrane exhibited a decreasing rejection rate in the sequence as follow: R(Na2SO4)>R(NaCl)>R(MgSO4)>R(MgCl2). Compared to GO-Al2O3 membrane, the rejection of four inorganic salt solutions with dopamine-grafted GO-Al2O3 membrane had significant increase.
第一作者简介:王晨颖(1993-),女,江苏南京人,硕士研究生,主要从事氧化石墨烯陶瓷复合膜的制备及表征研究,E-mail: cyingwang@sina.com 通讯作者,E-mail: hqi@njtech.edu.cn

参考文献:
 [1] 漆虹,韩静,江晓骆. γ-Al2O3膜对单组分无机盐溶液的截留性能[J]. 膜科学与技术, 2010, 30(5): 28-32.
[2] 徐南平. 无机膜分离技术与应用[M]// 北京: 化学工业出版社, 2003: 347.
[3] Chen X F, Liu G P, Zhang H Y. Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol[J]. Chinese J Chem Eng, 2015, 23(7): 1102-1109.
[4] 李方,孟蝶. 氧化石墨烯:膜科学的机遇与挑战[J]. 膜科学与技术, 2015, 35(6): 106-112.
[5] Li G H, Shi L, Zeng G F. Efficient dehydration of the organic solvents through graphene oxide (GO)/ceramic composite membranes[J]. RSC Adv, 2014, 4(94): 52012-52015.
[6] Giménez-Pérez A, Bikkarolla S K, Benson J. Synthesis of N-doped and non-doped partially oxidised graphene membranes supported over ceramic materials[J]. J Mater Sci, 2016, 51(18): 8346-8360.
[7] Aba N F D,Chong J Y, Wang B. Graphene oxide membranes on ceramic hollow fibers-Microstructural stability and nanofiltration performance[J]. J Membr Sci, 2015, 484:87-94.
[8] Dreyer D R, Park S, Bielawski C W. The chemistry of graphene oxide[J]. Chem Soc rev, 2010, 39(1): 228-240.
[9] Zheng S X, Mi B X. Emerging investigators series: silica-crosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water[J]. Environ Sci Water Res Technol, 2016, 2:717-725.
[10] Lou Y Y, Liu G P, Liu S N. A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification[J]. Appl Surf Sci, 2014, 307:631-637.
[11] 高克,许中煌,洪昱斌. 氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能[J]. 化工学报, 2017, 68(5): 2177-2185.
[12] 徐又一,蒋金泓,朱利平. 多巴胺的自聚-附着行为与膜表面功能化[J]. 膜科学与技术, 2011, 31(3): 32-38.
[13] Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environ sci technol, 2013, 47(8): 3715-3723.
[14] Shen H P, Wang N X, Ma K. Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance[J]. J Membr Sci, 2017, 527:43-50.
[15] Hu X B, Yu Y, Zhou J E. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane[J]. J Membr Sci, 2015, 476:200-204.
[16] Abraham J, Vasu K S, Williams C D. Tunable sieving of ions using graphene oxide membranes[J]. Nat nanotechnol, 2017, 12(6): 546-550.
[17] Paredes J I, Villar-Rodil S, Martinez-Alonso A. Graphene Oxide Dispersions in Organic Solvents[J]. Langmuir, 2008, 24:10560-10564.
[18] Joshi R K, Carbone P, Wang F W. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes[J]. Science, 2014, 343:752-754.
[19] Schaep J, Bruggen B V D, Vandecasteele C. Influence of ion size and charge in nanofiltration[J]. Sep Purif Technol, 1998, 14:155-162.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号