Pebax/TPP共混膜的制备及CO2分离性能研究
作者:伍勇东,赵丹,任吉中,李晖,姜冬,季洁梅,邓麦村
单位: 1. 洁净能源国家重点实验室,大连化学物理研究所,大连 116023;2. 中国科学院大学,北京 100049
关键词: Pebax; 三丙酸甘油酯;共混膜;CO2分离
出版年,卷(期):页码: 2020,40(1):37-44

摘要:
 为了获得具有高CO2分离性能的膜材料,采用三丙酸甘油酯(TPP)为添加剂制备Pebax1657/TPP混合膜,并考察了TPP含量对Pebax/TPP共混膜的结构及气体分离性能的影响。SEM、XRD、ATR-FTIR和TGA分析表明,Pebax与TPP具有良好的相容性及热稳定性;TPP的加入同时提高了共混膜对CO2和N2的溶解系数和扩散系数。Pebax/TPP共混膜中CO2和N2的气体渗透性能随着TPP含量的增加而增加,而CO2/N2的选择性随着TPP含量的增加而下降。
 To improve CO2 separation performance of Pebax matrix membrane, TPP was used as the additive to blend with Pebax1657 matirx. The effect of TPP on the morphology, structure and gas permeation performance of Pebax/TPP blend was investigated. Pebax and TPP had a good compartibility which was characterized with SEM, XRD, ATR-FTIR and TGA analysis. With the incorporation of TPP, the solubility and diffusion coefficients of the blend membranes both increased. Thus, the CO2 and N2 permeability of Pebax/TPP membranes increased with the increase of TPP content, while the CO2/N2 selectivity reduced at the same time.
第一作者简介:伍勇东(1990-),女,湖南益阳,博士生,从事气体分离方面研究,E-mail:wuyongdong@dicp.ac.cn 通讯作者,E-mail:renjizhong@dicp.ac.cn; zhaodan210@dicp.ac.cn

参考文献:
 [1] G.-R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesank, T.J.C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, F. Bairlein, Ecological responses to recent climate change, Nature, (2002) 389-395.
[2] O. Hoegh-Guldberg, P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, N. Knowlton, C.M. Eakin, R. Iglesias-Prieto, N. Muthiga, R.H. Bradbury, A. Dubi, M.E. Hatziolos, Coral reefs under rapid climate change and ocean acidification, Science 318 (2007) 1737-1742.
[3] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew Chem Int Ed Engl, 49 (2010) 6058-6082.
[4] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules, 45 (2012) 3298-3311.
[5] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
[6] V.I. Bondar, B.D. Freeman, I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, Journal of Polymer Science: Part B: Polymer Physics, 38 (2000) 2051-2062.
[7] J.H. Kim, S.Y. Ha, Y.M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, Journal of Membrane Science, 190 (2001) 179-193.
[8] S. Feng, J. Ren, Z. Li, H. Li, K. Hua, X. Li, M. Deng, Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation, International Journal of Greenhouse Gas Control, 19 (2013) 41-48.
[9] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, Journal of Membrane Science, 307 (2008) 88-95.
[10] Y.T. Qiu, J.Z. Ren, D. Zhao, H. Li, K.S. Hua, X. Li, M.C. Deng, Blend membranes of poly(amide-6-b-ethylene oxide)/[Emim][PF 6 ] for CO2 separation, Separation and Purification Technology, 179 (2017) 309-319.
[11] Y.D. Wu, D. Zhao, J.Z. Ren, Y.T. Qiu, M.C. Deng, A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture, Separation and Purification Technology, 215 (2019) 480-489.
[12] P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Ka?írková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Separation and Purification Technology, 97 (2012) 73-82.
[13] H. Lin, B.D. Freeman, Materials selection guidelines for membranes that remove CO2 from gas mixtures, Journal of Molecular Structure, 739 (2005) 57-74.
[14] M.B. Miller, D.R. Luebke, R.M. Enick, CO2-philic oligomers as novel solvents for CO2 absorption, Energy & Fuels, 24 (2010) 6214-6219.
[15] H. Sanaeepur, A.E. Amooghin, A. Moghadassi, A. Kargari, Preparation and characterization of acrylonitrile–butadiene–styrene/poly(vinyl acetate) membrane for CO2 removal, Separation and Purification Technology, 80 (2011) 499-508.
[16] H. Abdul Mannan, T.M. Yih, R. Nasir, H. Muhktar, D.F. Mohshim, Fabrication and characterization of polyetherimide/polyvinyl acetate polymer blend membranes for CO2/CH4 separation, Polymer Engineering & Science, 59 (2019) E293-E301.
[17] M. Abdollahi, M. Khoshbin, H. Biazar, G. Khanbabaei, Preparation, morphology and gas permeation properties of carbon dioxide-selective vinyl acetate-based Polymer/Poly(ethylene oxide-b-amide 6) blend membranes, Polymer, 121 (2017) 274-285.
[18] H. Rabiee, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide 6)/glycerol triacetate gel membranes, Journal of Membrane Science, 469 (2014) 43-58.
[19] S. Feng, J. Ren, D. Zhao, H. Li, K. Hua, X. Li, M. Deng, CO2-philic polyether-block-amide/glycerol triacetate blend membranes: gas-permeation performance, thermal stability, and storage stability, Journal of Applied Polymer Science, 136 (2019) 47620.
[20] T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), Journal of Polymer Science: Part B: Polymer Physics, 38 (2000) 415-434.
[21] 邱永涛, 任吉中, 赵丹, 李晖, 花开胜, 王颖, 黄雪飞, 邓麦村, Pebax_Bmim_PF_6_共混膜的制备及性能研究, 膜科学与技术, (2016) 9-16.
[22] S. Meshkat, S. Kaliaguine, D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Separation and Purification Technology, 235 (2020) 116150.
[23] S.A. Mohammed, A.M. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W.J. Lau, N. Yusof, W.N.W. Salleh, A.F. Ismail, CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane, Separation and Purification Technology, 223 (2019) 142-153.
[24] S.R. Reijerkerk, M.H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes, Journal of Membrane Science, 352 (2010) 126-135.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号