超疏水PDMS/PVDF纳米纤维膜制备及其苯酚分离性能
作者:齐炜东,徐孙杰,许振良,李萍萍,尹怡
单位: 化学工程联合国家重点实验室,膜科学与工程研发中心,化学工程研究所,华东理工大学化工学院,上海
关键词: 苯酚;聚二甲基硅氧烷;芳香烃膜分离回收系统;静电纺丝;纳米纤维膜
出版年,卷(期):页码: 2021,41(1):10-15

摘要:
采用静电纺丝法制备了聚二甲基硅氧烷(PDMS)/聚偏氟乙烯(PVDF)纳米纤维膜,通过扫描电镜(SEM)、红外光谱(ATR-FTIR)、能谱仪(EDS)、原子力显微镜(AFM)、水接触角等仪器对膜进行了表征,并获得了苯酚传质分离性能,讨论了PDMS/PVDF配比对纳米纤维膜结构和性能的影响。结果表明:当PDMS:PVDF = 3:7时,纳米纤维膜MPDMS3具有最佳微观形貌,厚度30 μm,水接触角150°且25 ℃时总传质系数Kov为16.9 × 10-7 m/s。将制备的膜MPDMS3应用于芳香烃膜分离回收系统(MARS)中分离水中苯酚,75 h后苯酚去除率达到99.7%,具有良好的长期稳定性。
The PDMS/PVDF nanofiber membrane was prepared by electrospinning method. Through the characterization of SEM, ATR-FTIR, EDS, AFM, water contact angle and the MARS tests, the PDMS/PVDF ratio was compared to the influence of membrane structure and performance. The experiments found that when PDMS:PVDF = 3:7, membrane MPDMS3 has the best micro-morphology with the thickness of 30 μm, water contact angle of 150°. And the total mass transfer coefficient Kov reaches 16.9 × 10-7 m/s at 25 ℃. The prepared membrane MPDMS3 was applied to membrane aromatic recovery system (MARS) and showed a good long-term stability. After 75 h, the phenol removal rate reached 99.7%.
齐炜东(1994-),男,安徽桐城,硕士研究生在读,主要从事膜制备及其水处理研究工作

参考文献:
[1] 王敏敏, 张新儒, 李馨然, 等. PEBA/MCM-41杂化膜的制备及其对苯酚/水渗透汽化分离性能的研究[J]. 膜科学与技术, 2015, 35(06): 40-47.
[2] Han, S., F.C. Ferreira, and A. Livingston. Membrane aromatic recovery system (MARS) — a new membrane process for the recovery of phenols from wastewaters[J]. Journal of Membrane Science, 2001, 188(2): 219-233.
[3] 朱莹, 贺高红, 柴永峰, 许润珅. 硅橡胶膜渗透萃取脱除模拟废水中苯酚的研究[J]. 渤海大学学报(自然科学版), 2009, 30(03): 196-201.
[4] 韩秋, 周浩力, 刘公平, 金万勤. PDMS/PVDF复合膜分离VOC/N2的性能研究[J]. 膜科学与技术, 2015, 35(01): 75-81.
[5] Daisley, G.R., M.G. Dastgir, F.C. Ferreira, et al. Application of thin film composite membranes to the membrane aromatic recovery system[J]. Journal of Membrane Science, 2006, 268(1): 20-36.
[6] Xiao, M., J. Zhou, Y. Zhang, et al. Pertraction performance of phenol through PDMS/PVDF composite membrane in the membrane aromatic recovery system (MARS)[J]. Journal of Membrane Science, 2013, 428: 172-180.
[7] Yang, D., X. Liu, Y. Jin, et al. Electrospinning of Poly(dimethylsiloxane)/Poly(methyl methacrylate) Nanofibrous Membrane: Fabrication and Application in Protein Microarrays[J]. Biomacromolecules, 2009, 10(12): 3335-3340.
[8] Ren, L.-F., M. Adeel, J. Li, et al. Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane[J]. Water Research, 2018, 135: 31-43.
[9] Deka, B.J., E.-J. Lee, J. Guo, et al. Electrospun Nanofiber Membranes Incorporating PDMS-Aerogel Superhydrophobic Coating with Enhanced Flux and Improved Antiwettability in Membrane Distillation[J]. Environmental Science & Technology, 2019, 53(9): 4948-4958.
[10] Ren, L.F., E. Al Yousif, F. Xia, et al. Novel electrospun TPU/PDMS/PMMA membrane for phenol separation from saline wastewater via membrane aromatic recovery system[J]. Separation and Purification Technology, 2019, 212: 21-29.
[11] Ahmed, F.E., B.S. Lalia, and R. Hashaikeh. A review on electrospinning for membrane fabrication: Challenges and applications[J]. Desalination, 2015, 356: 15-30.
[12] Rehman, W.U., A. Muhammad, M. Younas, et al. Effect of membrane wetting on the performance of PVDF and PTFE membranes in the concentration of pomegranate juice through osmotic distillation[J]. Journal of Membrane Science, 2019, 584: 66-78.
[13] He, X., T. Wang, J. Huang, J. Chen, and J. Li. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation[J]. Separation and Purification Technology, 2020, 241: 116675.
[14] Jiao, L., K. Yan, J. Wang, S. Lin, et al. Low surface energy nanofibrous membrane for enhanced wetting resistance in membrane distillation process[J]. Desalination, 2020, 476: 114210.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号