醋酸纤维素/MOF混合基质膜的水/盐传输
作者:尤蒙,孙玉绣,许飞,高鑫,孟建强
单位: 1. 天津工业大学 分离膜与膜过程国家重点实验室,天津 300387; 2. 天津工业大学 材料科学与工程学院,天津 300387; 3. 天津工业大学 化学与化工学院, 天津 300387
关键词: 混合基质膜;溶解-扩散理论;传输性能;选择性;反渗透
出版年,卷(期):页码: 2021,41(3):77-88

摘要:
 金属有机框架(MOFs)是一种近几年发展起来的一种具有规整孔结构的无机纳米粒子,在膜分离方面表现出很大应用前景。其中,MOF在水处理方面应用最成功的例子就是聚酰胺薄层复合纳米膜(TFN)的制备。在聚酰胺层中加入MOF无机粒子,可以实现通量和截留的协同优化。但是由于聚酰胺层各向异性,不均一,很薄(< 500 nm),难于表征其传质性质,因此MOF改善反渗透膜性能的机理尚不清楚。我们以溶解-扩散理论为基础,选择可以制成均质膜的三醋酸纤维素(CTA)为原膜,研究加入MOF粒子(UiO-66, MIL-101 和ZIF-8)对其水/盐传输的影响。研究发现,MOF的加入能够提高混合基质膜的密度和玻璃化转变温度(Tg),这主要是因为MOF和CTA链之间的物理相互作用使聚合物链吸附在MOF表面,导致聚合物链运动受到限制。同时,MOF破坏CTA链的堆积,降低了其结晶度。与原膜相比,添加MOF粒子对膜的水和盐吸收影响比较小,但明显降低了其对于盐的扩散和渗透,这主要归因于膜致密化和MOF与水合盐离子之间的相互作用。因此,MOF的加入在一定程度上可以提高膜的水/盐选择性。总之,MOF粒子的加入主要是通过明显降低盐离子的扩散而提高了CTA的水/盐选择性。
 Metal organic frameworks (MOFs) is one of the inorganic nanoparticles with regular pore structure and has recently drawn tremendous attention for the water treatment applications. One of the most successful applications is the fabrication of polyamide thin-film nanocomposite (TFN) membrane, which illustrated advantageous combination of water flux and salt rejection. However, the mechanisms of the improved desalination for TFN membrane are still unknown due to the anisotropy, uneven and very thin polyamide layer. We selected cellulose triacetate (CTA) as the base membrane and MOFs (UiO-66, MIL-101 and ZIF-8) as inorganic fillers to prepare the mixed matrix membranes for studying the effect of MOF on the water/salt transport properties based on the solution-diffusion theory. The addition of MOF increased the Tg and membrane density, which was due to the physical interaction between CTA chains and the MOF decreasing the flexibility of CTA chains. The MOFs destroyed the CTA chain packing and decreased its crystallinity. Compared to the CTA membrane, the adding of MOF showed small effect on the water and salt sorption, but greatly decreased the salt diffusivity and permeability, which was due to the membrane densification and interaction of salt ions with MOFs. As a result, the selectivity of the MOF/CTA increased. In all, the adding of MOF significantly increased the water/salt permeation selectivity by suppressing salt diffusion.
尤蒙1990-),女,河北石家庄,博士生,从事反渗透膜以及聚合物膜传质机理研究,

参考文献:
 [1] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452: 301-310.
[2] Wen Y H, Yuan J M, Ma X, et al. Polymeric nanocomposite membranes for water treatment: a review [J]. Environ Chem Lett, 2019, 17: 1539-1551.
[3] Qasim M, Badrelzaman M, Darwish N N, et al. Reverse osmosis desalination: A state-of-the-art review [J]. Desalination, 2019, 459: 59-104.
[4] Jaydevsinh M G, Paramita R. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination [J]. Sep Purif Technol, 2017, 181:159-182.    
[5] Lee K P, Arnot T C, Mattia D, et al. A review of reverse osmosis membrane materials for desalination-Development to date and future potential [J]. J Membr Sci, 2011, 370:1-22.
[6] Loeb S, Sourirajan S, Sea water demineralization by means of an osmotic membrane, Saline Water Conversion-II [J]. Am Chem Soc, 1963:117–132.
[7] Edgar K J, Buchanan C M, Debenham J S, et al. Advances in cellulose ester performance and application [J]. Prog Polym Sci, 2001, 26 (9):1605-1688.
[8] Jeong B H, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes [J]. J Membr Sci, 2007, 294 (1/2):1-7.
[9] Zhang Y Y, Wu B, Xu H, et al. Nanomaterials-enabled water and wastewater treatment [J]. NanoImpact, 2016, 3/4:22-39. 
[10] Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches [J]. Water Res, 2015, 80:306-324.
[11] Geise G M, Park H B, Sagle A C, Water permeability and water/salt selectivity tradeoff in polymers for desalination [J]. J Membr Sci, 2011, 369:130-138.
[12] 翟睿,焦丰龙,郝斐然,等. 金属有机框架材料的研究进展[J]. 色谱, 2014, 32(2):107-116.
[13] 姜卫玲. 金属有机框架-高分子功能复合材料的构建及性能研究[D]. 山东: 山东师范大学, 2017.
[14] Kadhom M, Hu W M, Deng B L. Thin Film Nanocomposite Membrane Filled with Metal-Organic Frameworks UiO-66 and MIL-125 Nanoparticles for Water Desalination [J]. Membranes, 2017, 7(2):31.
[15] Xiao F, Hu X Y, Chen Y B, et al. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance [J]. ACS Appl Mater Interface, 2019, 11:47390-47403.
[16] Wang F H, Zheng T, Xiong R H, et al. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer [J]. Chemoshere, 2019, 223:524-531
[17] Geise G M, Paul D R, Freeman B D, Fundamental water and salt transport properties of polymeric materials [J]. Prog Polym Sci, 2014, 39:1−42.
[18] Yang Q Y, Vaesen S, Ragon F, et al. A water stable metal–organic framework with optimal features for CO2 capture [J]. Angew Chem Int Ed, 2013, 52:10316-10320.
[19] Zhou Y X, Chen Y Z, Hu Y L, et al. MIL-101-SO3H: A highly efficient brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions [J]. Chem Eur J, 2014, 20:14976-14980.
[20] Jayaramulu K, Datta K K R, Rosler C, et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil–water separation [J]. Angew Chem Int Ed, 2016, 55:1178-1182.
[21] Han J, Cho Y H, Kong H Y, et al. Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications [J]. J Membr Sci, 2013, 428:533-545.
[22] Ong R C, Chung T S, Helmer B J, et al. Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters [J]. Polymer, 2013, 54:4560-4569.
[23] Lonsdale H K, Merten U, Riley R L, Transport properties of cellulose acetate osmotic membranes [J]. J Appl Polym Sci, 1965, 9:1341-1362.
[24] Ju H, McCloskey B D, Sagle A C, et al. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials [J]. J Membr Sci, 2009, 330:180-188.
[25] Ju H, Sagle A C, Freeman B D, et al. Characterization of sodium chloride and water transport in crosslinked poly (ethylene oxide) hydrogels [J]. J Membr Sci, 2010, 358:131-141.
[26] Luo H X, Aboki J, Ji Y Y, et al. Water and salt transport properties of triptycene-containing sulfonated polysulfone materials for desalination membrane applications [J]. ACS Appl Mater Interfaces, 2018, 10:4102-4112.
[27] Flory P, Thermodynamics of high polymer solutions [J]. J Chem Phys, 1942, 10:51-61.
[28] Huggins M L, Solutions of long chain compounds [J]. J Chem Phys, 1941, 9:440-440.
[29] You M, Yin J, Sun R B, et al. Water/salt transport properties of organic/inorganic hybrid films based on cellulose triacetate [J]. J Membr Sci, 2018, 563:571-583.
[30] Ji Y Y, Luo H X, Geise G M, Specific co-ion sorption and diffusion properties influence membrane permselectivity [J]. J Membr Sci, 2018, 563:492-504.
[31]H. Mahmood, A. Pegoretti, R.S. Ceccato, L. Penasa, S. Tarter, R. Checchetto, Molecular transport through 3-hydroxybutyrate co-3-hydroxyhexanoate biopolymer films with dispersed graphene oxide nanoparticles: Gas barrier, structural and mechanical properties, Polym. Test. 81 (2020) 106181.
[32] P. Sikorski, M. Wada, L. Heux, H. Shintani, B.T. Stokke, Crystal structure of cellulose triacetate I. Macromolecules 2004, 37 (12), 4547-4553.
[33] Lue S J J, Chen J Y, Yang J M, Crystallinity and stability of poly(vinyl alcohol)‐fumed silica mixed matrix membranes [J]. J Macromol Sci Part B: Phys, 2008, 47:39-45.
[34] Sharma S K, Prakssh J, Pujari P K, Effects of the molecular level dispersion of graphene oxide on the free volume characteristics of poly(vinyl alcohol) and its impact on the thermal and mechanical properties of their nanocomposites [J]. Phys Chem Chem Phys, 2015, 17:29201-29209.
[35] Kamcev J, Paul D R, Freeman B D, Ion Activity Coefficients in Ion Exchange Polymers: Applicability of Manning’s Counterion Condensation Theory [J]. Macromolecules, 2015, 48:8011-8024.
[36] Yasuda H, Lamaze C E, Ikenberry L D, Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride [J]. Die Makromol Chem, 1968, 18:19-35.
[37] Oh H J, Mcgrath J E, Paul D R, Water and salt transport properties of disulfonated poly(arylene ether sulfone) desalination membranes formed by solvent-free melt extrusion [J]. J Membr Sci, 2018, 546:234-245.
[38] Xie W, Cook J, Park H B, et al. Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymer [J]. Polymer, 2011, 52:2032-2043.
[39] Azan S U, Hussain A, Farrukh S, et al. Enhancement in the selectivity of O2/N2 via ZIF-8/CA mixed-matrix
membranes and the development of a thermodynamic model to predict the permeability of gases [J]. Environ Sci Pollut Res, 2020, 27:24413-24429.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号