改性石墨烯材料掺杂聚酰亚胺制备混合基质膜分离CO2/N2
作者:尚景宏,臧毅华,罗林军,权凯栋,盛春光,刘宗园,李阳,张树友
单位: 1. 中海石油(中国)有限公司天津分公司,天津300450;2.中海油天津化工研究设计院有限公司,天津300131;3.长庆油田第一采油厂,陕西延安716000
关键词: 聚酰亚胺;CO2/N2气体分离;氧化石墨烯;还原氧化石墨烯;混合基质膜
出版年,卷(期):页码: 2021,41(3):98-104

摘要:
 海洋石油生产平台日常产生大量CO2温室气体,对其进行分离捕集并回注地层,可有效改善原油流动性,提高原油产收率,产生可观的经济效益及环保社会效益。但因技术及成本制约,CO2高纯度分离成为目前研究热点之一。在CO2分离领域,膜分离技术相比于传统技术具有简单高效、节能环保等明显优势。聚酰亚胺是目前最具有应用价值的气体分离膜材料,因受Robeson上限的限制,很难同时满足高渗透系数和高选择的要求。本文使用氧化石墨烯和还原氧化石墨烯对聚酰亚胺进行掺杂制备混合基质膜,进行了CO2/N2气体分离的实验研究。结果表明,制备的氧化石墨烯掺杂的聚酰亚胺混合基质膜(PI-GO)和还原氧化石墨烯掺杂的聚酰亚胺混合基质膜(PI-rGO)相比于纯聚酰亚胺膜,分离性能明显提升;对比混合气干湿态气体渗透性能实验,PI-rGO膜的渗透系数和分离因数分别上升了13.52%和24.34%。
 A large amount of CO2 greenhouse gas was produced by offshore oil production platform daily. The separation and capture of CO2 greenhouse gas and its reinjection into the formation can effectively improve the liquidity of crude oil, increase the yield of crude oil, and produce considerable economic benefits and environmental protection and social benefits. However, due to the constraints of technology and cost, high-purity separation of CO2 has become one of the research hotspots. Polyimide is the most valuable gas separation membrane material at present. Because of Robeson upper limitation, the commercially available polymeric membranes often have either high permeability or high selectivity, but not two together. In this paper, polyimide was doped with self-made graphene oxide and reduced graphene oxide to prepare mixed matrix membrane, and the experimental study of CO2 / N2 gas separation was carried out. The results show that the separation performance of the prepared graphene oxide doped polyimide mixed matrix membrane (PI-GO) and reduced graphene oxide doped polyimide mixed matrix membrane (PI-rGO) is significantly improved compared with the pure polyimide membrane; the permeability coefficient and separation factor of the PI-rGO are increased by 13.52% and 24.34% respectively compared with the dry and wet gas permeability experiments. 
尚景宏(1977-),男,河北沧州人,研究方向为海洋石油工程,

参考文献:
 [1]宗杰, 马庆兰, 陈光进, 等. 二氧化碳分离捕集研究进展[J]. 现代化工, 2016, 36(11): 56-60.
[2] Sainan Z , Wang M , Wei S , et al. First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2[J]. Materials Today Physics, 2021, 16.
[3] A Y H , A X Z , B F M , et al. Progress in carbon dioxide separation and capture: A review - ScienceDirect[J]. Journal of Environmental Sciences, 2008, 20(001):14-27.
[4]王志, 杨东晓, 张晨昕, 等. 分离二氧化碳膜过程技术经济分析[J]. 化工进展, 2009, 28(s2): 409-410.
[5] Xiao Y , Low B T , Hosseini S S , et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6):561-580.
[6] Jie, Shen, Gongping D , et al. Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2Capture[J]. Angewandte Chemie International Edition, 2015.
[7]辛清萍. 突破 Trade-off 效应的聚电解质-无机杂化膜及其 CO2分离性能强化[D]. 天津大学, 2015.
[8]Wu H, Li X, Li Y, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of membrane science, 2014, 465: 78-90.
[9]Sadeghi M, Semsarzadeh M A, Barikani M, et al. Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes[J]. Journal of Membrane Science, 2011, 376(1-2): 188-195.
[10]Moghadam F, Omidkhah M R, Vasheghani-Farahani E, et al. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes[J]. Separation and Purification Technology, 2011, 77(1): 128-136.
[11]Momeni S M, Pakizeh M. Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane[J]. Brazilian Journal of Chemical Engineering, 2013, 30(3): 589-597.
[12]Kim S, Jinschek J R, Chen H, et al. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport[J]. Nano letters, 2007, 7(9): 2806-2811.
[13]Aroon M A, Ismail A F, Matsuura T. Beta-cyclodextrin functionalized MWCNT: a potential nano-membrane material for mixed matrix gas separation membranes development[J]. Separation and Purification Technology, 2013, 115: 39-50.
[14]Li W, Zheng X, Dong Z, et al. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes[J]. The Journal of Physical Chemistry C, 2016, 120(45): 26061-26066.
[15]李雪琴. CO2分离膜的传递通道构建及传递过程强化[D]. 天津大学, 2015.
[16] Bao‐Sheng Ge, Wang T , Hai‐Xiang Sun, et al. Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation[J]. Polymers for Advanced Technologies, 2018.
[17]Shen J, Zhang M, Liu G, et al. Size effects of graphene oxide on mixed matrix membranes for CO2 separation[J]. AIChE Journal, 2016, 62(8): 2843-2852.
[18]程诚. 功能化石墨烯/聚酰亚胺杂化膜构建及其分离性能研究[D]. 浙江工商大学, 2015.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号