Mo和N共掺杂的一体化膜电极 用于锂硫电池
作者:姜福林,李祥村,初众,姜晓滨,肖武,吴雪梅,贺高红
单位: 大连理工大学精细化工国家重点实验室,膜科学与技术研究开发中心,辽宁 大连 116024
关键词: 相转化法;一体化膜电极;催化作用;三维导电网络;锂硫电池
出版年,卷(期):页码: 2021,41(5):1-10

摘要:
 采用相转化法构建了电极膜-隔膜一体化膜,并进一步通过Mo单质的掺杂制得MoNCNTs/CNTs-PAN,用以简化电池结构,提升电池性能。Mo、N共掺杂的正极膜层可以吸附并催化多硫化物转化,有效抑制“穿梭效应”。膜层内部交错的三维多孔网络和良好的孔隙结构,在增强导电性的同时能有效缓冲活性物质的体积膨胀。一体化膜电极应用于锂硫电池时表现出优异的电化学性能,在较低载硫量0.6-0.8mg/cm2时,在0.5 C电流密度下经过100圈循环后放电比容量为927.2 mA h/g,库伦效率为98.9 %,在高载硫量4.0 mg/cm2时,在0.2 C电流密度下经过100圈循环后仍保持530.1 mA h/g的放电比容量,平均每圈容量衰减率仅为0.09 %。结果表明,一体化膜在锂硫电池中具有良好的应用前景。
  In order to simplify the structure of batteries and improve the performance of batteries, the integrated membrane of electrode membrane-interlayer was constructed by phase inversion method, and the MoNCNTs/CNTs-PAN was further prepared by doping Mo elemental substance. The Mo and N co-doped cathode membrane can adsorb and catalyze the transformation of polysulfide, effectively inhibiting the "shuttle effect". The interlocking three-dimensional porous network and good pore structure in the membrane can enhance the electrical conductivity and effectively buffer the volume expansion of the active material. The integrated membrane electrode shows excellent electrochemical performance, with a discharge specific capacity of 927.2 mA h/g and a coulomb efficiency of 98.9 % at a low sulfur load at 0.5 C after 100 cycles, even at a high sulfur loading of 4.0 mg/cm2, a discharge specific capacity of 530.1 mA h/g can be maintained at 0.2 C after 100 cycles, the average capacity decay rate per cycle is only 0.09 %. The results show that the integrated membrane has a good application prospect in lithium-sulfur batteries.
姜福林(1995-), 男,山东烟台人,硕士,研究方向为锂硫电池电极及隔层材料

参考文献:
 [1] Kou W, Chen G H, Liu Y, et al. Patterned macroporous Fe3C/C membrane-induced high ionic conductivity for integrated Li-sulfur battery cathodes[J]. J Mater Chem A, 2019, 7 (36): 20614-20623.
[2] Li X C, Zhang Y, Wang S T, et al. Hierarchically porous C/Fe3C membranes with fast ion-transporting channels and polysulfide-trapping networks for high-areal-capacity Li-S batteries[J]. Nano Lett, 2020, 20 (1): 701-708.
[3] Zhang J, Huang H, Bae J, et al. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry[J]. Small Methods, 2018, 2 (1): 1700279.
[4] Bresser D, Passerini S, Scrosati B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review[J]. Chemi Commun, 2013, 49 (90): 10545-10562.
[5] Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects[J]. Adv Mater, 2017, 29 (48): 1606823.
[6] Zhang J, Shi Y, Ding Y, et al. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery[J]. Nano Lett, 2016, 16 (11): 7276-7281.
[7] Hu C, Kirk C, Silvestre-Albero J, et al. Free-standing compact cathodes for high volumetric and gravimetric capacity Li-S batteries[J]. J Mater Chem A, 2017, 5 (37): 19924-19933.
[8] Lee J S, Jun J, Jang J, et al. Sulfur-immobilized, activated porous carbon nanotube composite based cathodes for lithium-sulfur batteries[J]. Small, 2017, 13 (12): 1602984.
[9] Ma Z L, Tao L, Liu D D, et al. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries[J]. J Mater Chem A, 2017, 5 (19): 9412-9417.
[10] Guo D Y, Chen X A, Wei H F, et al. Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries[J]. J Mater Chem A, 2017, 5 (13): 6245-6256.
[11] Li X, Cheng X B, Gao M X, et al. Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes[J]. ACS Appl Mater Interfaces, 2017, 9 (12): 10717-10729.
[12] He J R, Luo L, Chen Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Adv Mater, 2017, 29 (34): 1702707.
[13] Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Adv Mater, 2016, 28 (32): 6926-6931.
[14] Lin Z J, Li X, Huang W L, et al. Active platinum nanoparticles as a bifunctional promoter for lithium-sulfur batteries[J]. ChemElectroChem, 2017, 4 (10): 2577-2582.
[15] Liu Y, Kou W, Li X C, et al. Constructing patch-Ni-shelled Pt@Ni nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries[J]. Small, 2019, 15 (34): 1902431.
[16] Chen Y M, Li X Y, Zhou X Y, et al. Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials[J]. Energy Environ Sci, 2014, 7 (8): 2689-2696.
[17] Liu S H, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Adv Mater, 2018, 30 (12): 1706895.
[18] Zhu P, Yan C Y, Zhu J D, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries[J]. Energy Storage Mater, 2019, 17: 220-225.
[19] Wang H Q, Zhang W C, Liu H K, et al. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries[J]. Angew Chem Int Ed, 2016, 55 (12): 3992-3996.
[20] Wang J N, Yang G R, Chen J, et al. Flexible and high-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes[J]. Adv Energy Mater, 2019, 9 (38): 1902001.
[21] Razzaq A A, Yao Y Z, Shah R, et al. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes[J]. Energy Storage Mater, 2019, 16: 194-202.
[22] Park K, Cho J H, Jang J H, et al. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix [J]. Energy Environ Sci, 2015, 8: 2389-2395.
[23] She Z W, Wang H T, Hsu P C, et al. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes[J]. Energy Environ Sci, 2014,7: 672-676.
[24] Pang Q, Nazar L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016,10: 4111-4118.
[25] Li Y J, Wang C, Wang W Y, et al. Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li-S batteries[J]. ACS Nano, 2019, 14 (1): 1148-1157.
[26] Li Z Q, Yin L W. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance[J]. ACS Appl Mater Interfaces, 2015, 7 (7): 4029-4038.
[27] Pan H, Cheng Z B, Xiao Z B, et al. The fusion of imidazolium-based ionic polymer and carbon nanotubes: one type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries[J]. Adv Funct Mater, 2017, 27 (44): 1703936.
[28] Wang S T, Li X C, Zhang Y, et al. Highly efficient polysulfide trapping and ion transferring within a hierarchical porous membrane interlayer for high-energy lithium-sulfur batteries[J]. ACS Appl Energy Mater, 2020, 3 (5): 5050-5057.
[29] Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium–sulfur batteries[J]. Adv Energy Mater, 2017, 7 (24): 1700260.
[30] Wang Y, Su S Y, Cai L J, et al. Monolithic integration of all-in-one supercapacitor for 3D electronics[J]. Adv Energy Mater, 2019, 9 (15): 1900037.
[31] Kou W, Li X C, Liu Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries[J]. ACS Nano, 2019, 13(5): 5900-5909.
[32] Li X C, Zhang Y, Wang S T,et al. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption[J]. Nano Lett, 2020, 20 (9): 6922-6929.
[33] Zhu X B, Ouyang Y, Chen J W, et al. In situ extracted poly (acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries[J]. J Mater Chem A, 2019, 7 (7): 3253-3263.
[34] Zhao M Q, Zhang Q, Huang J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries [J]. Nat Commun, 2014, 5: 3410.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号