机械化学法合成多配体MOF填料用于高效CO2分离
作者:赵新,乔志华,孙玉绣,郭翔宇,仲崇立
单位: 天津工业大学省部共建分离膜与膜过程国家重点实验室,化学工程与技术学院,天津 300387
关键词: 机械化学法;ZIF-8-Bim-Ica;多配体;混合基质膜;CO2分离
出版年,卷(期):页码: 2021,41(5):11-16

摘要:
 以ZIF-8为母体材料通过机械化学手段引入苯并咪唑(Bim)和咪唑-2-甲醛(Ica)两种配体,得到多配体的MOF材料ZIF-8-Bim-Ica。与聚醚共聚酰胺(Pebax-1657)混合制得混合基质膜(MMMs)。利用XRD、FT-IR、核磁共振氢谱等方法确定了ZIF-8-Bim-Ica的化学结构,利用SEM对混合基质膜的断面进行表征。结果表明,引入Bim和Ica配体后,ZIF-8的结构没有被破坏,ZIF-8-Bim-Ica颗粒均匀分散于Pebax聚合物中。加入ZIF-8-Bim-Ica提高了混合基质膜的CO2渗透通量和对CO2/CH4的选择性。与纯膜相比,掺杂量为10 wt%时,混合基质膜的CO2渗透通量可达269.3 Barrer,提高了29.3 %,CO2/CH4的选择性由18.5提高到43.8,并且膜性能至少可保持40 h的稳定性。由本方法制备的ZIF-8-Bim-Ica/Pebax混合基质膜对CO2的选择性较高,在CO2气体分离领域展现出良好的应用前景。
 ZIF-8 was synthesized by mechanization method. With ZIF-8 as the parent,the mixed ligands MOF material ZIF-8-Bim-Ica was obtained by mechanochemical means to introduce benzimidazole (Bim) and 2-Imidazolecarboxaldehyde (Ica). Mixed matrix membranes (MMMS) was prepared by mixing with polyether copolyamide (Pebax-1657). The chemical structure of ZIF-8-Bim-Ica was determined by XRD,FTIR and 1H NMR spectra,and the cross section of the mixed matrix membranes were characterized by SEM. The results showed that the structure of ZIF-8 was not damaged after the introduction of Bim and Ica, and the ZIF-8-Bim-Ica particles were evenly dispersed in the Pebax polymer. The addition of ZIF-8-Bim-Ica improved the CO2 permeation flux and the CO2/CH4 selectivity of the mixed matrix membranes. Compared with the pure membrane,the CO2 permeation flux of the mixed matrix membrane with 10 wt% doping amount can reach 269.3 Barrer,increased by 29.3 %,and the CO2/CH4 selectivity is increased from 18.5 to 43.8,and the stability of the membrane can be maintained for at least 40 hours. The ZIF-8-Bim-Ica/Pebax mixed matrix membranes prepared by this method has a high selectivity to CO2,showing a good application prospect in the field of CO2 gas separation.
赵新(1995-),男,河北衡水人,硕士研究生,主要研究方向为气体分离膜的制备,Email:zhaoxintgd@163.com

参考文献:
 [1] Dong G,Li H,Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. J. Mater. Chem. A,2013,1: 4610-4630 .
[2] Goh P S,Ismail A F,Sanip S M,et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation[J]. Separation and Purification Technology,2011,3(81): 243-264.
[3] Wang H,He S,Qin X,et al. Interfacial Engineering in Metal-Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes[J]. J. Am. Chem. Soc,2018,140(49): 17203–17210.
[4] Denny M S,Cohen S M. In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes[J]. Angewandte Chemie,2015,127(31): 9157-9160.
[5] Chung T S,Jiang L,Li Y,et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Progress in Polymer Science,2007,32(4): 483-507.
[6] Furukawa H,Cordova K E,et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149): 974.
[7] Hillman F,Brito J,et al. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations[J]. ACS Applied Materials & Interfaces,2018,10(6): 5586-5593.
[8] Hillman F,Jeong H K. Linker-doped Zeolitic-Imidazolate Frameworks (ZIFs) and their Ultrathin Membranes for Tunable Gas Separations[J]. ACS Applied Materials & Interfaces,2019,11(20): 18377-18385.
[9] Hu C,Lin C,Chiao Y,et al. The Mixing Effect of Ligand on Carbon Dioxide Capture Behavior of Zeolitic Imidazolate Framework/Poly (amide-b-ethylene oxide) Mixed Matrix Membranes[J]. ACS Sustainable Chemistry & Engineering,2018,6(11): 15341-15348.
[10] Thompson J A,Vaughn J T,Brunelli N A,et al. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas[J]. Microporous & Mesoporous Materials,2014,192: 43-51.
[11] Eum K,Rashidi F,et al. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks.[J]. Journal of the American Chemical Society,2015,137(12): 4191-4197.
[12] Zhang C,Xiao Y,Liu D,et al. A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture[J]. Chemical Communications,2012,49(6): 600-602.
[13] Hou Q,Wu Y,Zhou S,et al. Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO2/CH4 Separation[J]. Angewandte Chemie International Edition,2018,58(1): 327-331.
[14] Banerjee R,Phan A,Wang B,et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture[J]. Science,2008,319(5865): 939-943.
[15] Banerjee R,Furukawa H,et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties.[J]. Journal of the American Chemical Society,2009,131(11): 3875.
[16] Karagiaridi O,Bury W,Sarjeant A A,et al. Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange[J]. Chemical Science,2012,3(11): 3256.
[17] Thompson J A,Blad C R,Brunelli N,et al. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis[J]. Chemistry of Materials,2012,24(10): 1930–1936.
[18] Huang Y,Lo W,Kuo Y,et al. Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds[J]. Chemical Communications,2017,53: 5818-5821.
[19] Batista M M,Luque R,et al. Mechanochemistry: Toward Sustainable Design of Advanced Nanomaterials for Electrochemical Energy Storage and Catalytic Applications[J]. ACS Sustainable Chemistry & Engineering,2018,6(8): 9530-9544.
[20] Do J L,Friscic T. Mechanochemistry: A Force of Synthesis[J]. ACS Cent Sci,2017,3(1): 13-19.
[21] Zhou X,Miao Y,Suslick K S,et al. Mechanochemistry of Metal-Organic Frameworks Under Pressure and Shock[J]. Accounts of Chemical Research,2020,53(12): 2806-2815.
[22] 王树清,乔志华,王志. 分离CO2固定载体膜工业化制备技术[J]. 膜科学与技术,2016,36(5): 87-94.
[23] 王树清,乔志华,王志. 以3-甲氧基苄胺改性聚乙烯基胺制备CO2分离膜[J]. 膜科学与技术,2016,36(3): 1-7.
[24] 曹晓畅,王志,乔志华,等. 一步法制备含氨基化合物的非对称CO2分离膜[J]. 化工学报,2018,69(11):4778-4787.
[25] 何玉鹏,王志,乔志华,等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报,2015,66(10):3979-3990.
[26] 瞿媛媛,张玉龙,张丛健,等. 改善MOFs/聚合物混合基质膜气体分离性能的策略[J]. 膜科学与技术,2019,39(2): 135-142.
[27] 田洋洋,梁家晨,沈钦,等. MOF基混合基质膜的界面设计及气体分离研究进展[J]. 膜科学与技术,2019,39(1):129-139.
[28] 郭翔宇,阳庆元,含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报,2017,68(11): 4323-4332.
[29] Guo X,Huang H,Ban Y,et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J Membr Sci,2015,478: 130-139.
[30] Jomekian A,Kargari A,et al. Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8[J]. Journal of Solid State Chemistry,2016,236: 212-216.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号