莫来石负载碳纳米管复合膜的制备 及膜蒸馏性能研究
作者:武慧,孙春意,杨凤林,董应超
单位: 工业生态与环境工程教育部重点实验室,大连理工大学环境学院,辽宁大连 116024
关键词: 莫来石,陶瓷膜,碳纳米管,膜蒸馏,含盐废水
出版年,卷(期):页码: 2021,41(5):35-42

摘要:
 本研究首先制备了具有较高渗透性能及较好机械强度的晶须状莫来石陶瓷中空纤维膜载体,采用化学气相沉积的方法在其表面原位生长一层碳纳米管(CNTs)网络结构,制备得到超疏水莫来石-CNTs复合膜,其平均孔径为103 nm,氮气渗透性为125 m3/(m2·h·bar),水接触角达到157°,液体浸润压力为0.113 MPa。然后进一步研究了不同含盐废水的直接接触膜蒸馏性能,结果表明,在温差为50 ℃,进料液流速为0.77 m/s的条件下,该复合膜在3.5 wt.%的模拟海水及7.0 wt.%的高盐废水处理中分别达到了13 L/(m2·h)和6-7 L/(m2·h)的稳定渗透通量且12 h实验后未发生较大衰减,盐截留率(99.9%)和渗透侧电导率(<3 μS/cm)也均保持稳定。这表明了莫来石-CNTs复合膜在膜蒸馏应用中具有好的盐截留能力和渗透通量。
 In this work, whisker-structured mullite ceramic hollow fiber membrane supports were prepared sintered at 1500 ℃, featuring high permeability and good mechanical strength, and carbon nanotubes (CNTs) were in situ constructed on mullite substrate surface via chemical vapor deposition. The obtained superhydrophobic (water contact angle: 157°) mullite-CNTs composite membrane presented a good liquid entry pressure (0.113 MPa) while the average pore size and gas permeability were 103 nm and 125 m3/(m2·h·bar), respectively. Then, the direct contact membrane distillation performance for different saline wastewater was further studied. The results showed that mullite-CNTs composite membrane achieved stable permeate flux of 13 L/(m2·h) and 6-7 L/(m2·h) for 3.5 wt.% (simulated seawater) and 7.0 wt.% (high salinity wastewater), respectively, while salt rejection (99.9%) and permeate conductivity (<3 μS/cm) also were stable after 12 h. This result indicates that obtain composite membrane show good flux and salt rejection in membrane distillation.
武慧(1996-),女,硕士研究生,研究方向为陶瓷膜的制备及水处理应用,E-mail:wuhui0212@mail.dlut.edu.cn

参考文献:
 [1] Elimelech M, Phillip W A. The Future of Seawater Desalination: Energy, Technology, and the Environment[J]. Science, 2011, 333(6043): 712-717.
[2] Deshmukh A, Boo C, Karanikola V, et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges[J]. Energy Environ. Sci., 2018, 11(5): 1177-1196.
[3] 吴庸烈. 膜蒸馏技术及其应用进展[J]. 膜科学与技术, 2003(04): 67-79+92.
[4] Straub A P, Yip N Y, Lin S, et al. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes[J]. Nat. Energy, 2016, 1.
[5] Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review[J]. Desalination, 2012, 287: 2-18.
[6] Tong T, Elimelech M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions[J]. Environ. Sci. Technol., 2016, 50(13): 6846-6855.
[7] Werber J R, Deshmukh A, Elimelech M. The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes[J]. Environ. Sci. Technol. Lett., 2016, 3(4): 112-120.
[8] Fu M, Liu J, Dong X, et al. Waste recycling of coal fly ash for design of highly porous whisker-structured mullite ceramic membranes[J]. J. Eur. Ceram. Soc., 2019, 39(16): 5320-5331.
[9] Chen X, Li T, Ren Q, et al. Mullite whisker network reinforced ceramic with high strength and lightweight[J]. J. Alloys Compd., 2017, 700: 37-42.
[10] Krajewski S R, Kujawski W, Bukowska M, et al. Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions[J]. J. Membr. Sci., 2006, 281(1-2): 253-259.
[11] Kang L, Zhao L, Yao S, et al. A new architecture of super-hydrophilic beta-SiAlON/graphene oxide ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion[J]. Ceram. Int., 2019, 45(13): 16717-16721.
[12] Li L, Abadikhah H, Wang J-W, et al. One-step synthesis of flower-like Si2N2O nanowires on the surface of porous SiO2 ceramic membranes for membrane distillation[J]. Mater. Lett., 2018, 232: 74-77.
[13] Ashraf A, Salih H, Nam S, et al. Robust carbon nanotube membranes directly grown on Hastelloy substrates and their potential application for membrane distillation[J]. Carbon, 2016, 106: 243-251.
[14] Si Y, Sun C, Li D, et al. Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment[J]. Environ. Sci. Technol., 2020, 54(14): 9074-9082.
[15] 董应超, 马丽宁, 朱丽, et al. 碳纳米管复合膜的制备及水处理应用研究进展[J]. 膜科学与技术, 2016, 36(06): 1-10.
[16] Zhu L, Dong X, Xu M, et al. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets[J]. J. Membr. Sci., 2019, 582: 140-150.
[17] Chen M, Zhu L, Dong Y, et al. Waste-to-Resource Strategy To Fabricate Highly Porous Whisker-Structured Mullite Ceramic Membrane for Simulated Oil-in-Water Emulsion Wastewater Treatment[J]. ACS Sustainable Chem. Eng., 2016, 4(4): 2098-2106.
[18] Dong Y, Ma L, Tang C Y, et al. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes[J]. Nano Lett., 2018, 18(9): 5514-5521.
[19] Liao Y, Loh C-H, Wang R, et al. Electrospun Superhydrophobic Membranes with Unique Structures for Membrane Distillation[J]. ACS Appl. Mater. Interfaces, 2014, 6(18): 16035-16048.
[20] 郑瑞廷, 程国安, 赵勇, et al. 碳纳米管阵列拉曼光谱的对比研究[J]. 光谱学与光谱分析, 2006(06): 1071-1075.
[21] Li X, Wang C, Yang Y, et al. Dual-Biomimetic Superhydrophobic Electrospun Polystyrene Nanofibrous Membranes for Membrane Distillation[J]. ACS Appl. Mater. Interfaces, 2014, 6(4): 2431-2438.
[22] Fan Y, Chen S, Zhao H, et al. Distillation membrane constructed by TiO2 nanofiber followed by fluorination for excellent water desalination performance[J]. Desalination, 2017, 405: 51-58.
[23] 张江伟. 氮化物中空纤维膜制备及膜蒸馏应用研究[D]. 中国科学技术大学, 2013.
[24] Hubadillah S K, Othman M H D, Matsuura T, et al. Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation[J]. Sep. Purif. Technol., 2018, 205: 22-31.
[25] Ge J, Peng Y, Li Z, et al. Membrane fouling and wetting in a DCMD process for RO brine concentration[J]. Desalination, 2014, 344: 97-107.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号