磷酸掺杂bSPEEK-OPBI共混质子交换膜的制备及性能
作者:宋洁瑞,肖意明,张蕾,项军,唐娜,程鹏高,张建平,王松博,杜威
单位: 天津科技大学化工与材料学院,天津,300457
关键词: 聚苯并咪唑;磺化聚醚醚酮;质子交换膜;质子传导率;磷酸流失
出版年,卷(期):页码: 2022,42(1):1-9

摘要:
 为改善磷酸-聚苯并咪唑(PA-PBI)质子交换膜在燃料电池运行过程中磷酸浸出的问题以及进一步提高其质子传导率和机械强度,本文用高磺化度支链磺化聚醚醚酮(bSPEEK)与芳醚型聚苯并咪唑(OPBI)进行酸碱共混,利用流延法制备磷酸掺杂质子交换膜。结果表明,共混膜中bSPEEK最佳含量为30%,共混膜的体积溶胀率降低26.5%;机械强度提高83.7%;质子传导率分别提高43.8%(160 oC/0% 相对湿度(RH))和29.1%(80 oC/98% RH);60 oC/98% RH条件下的磷酸流失率降低48.8%。共混膜在提高机械强度和质子传导率的同时有效抑制了磷酸流失。
 In this work, we aimed to solve the problem of phosphoric acid leaching and improve the proton conductivity and mechanical strength of phosphoric acid polybenzimidazole (PA-PBI) proton exchange membrane. The phosphoric acid doped proton exchange membranes were prepared by casting method via co-blending high sulfonation degree branched-chain sulfonated polyether ether ketone (bSPEEK) and poly(aryl ether benzimidazole) (OPBI). The volume swelling ratio of the blend membrane decreased by 26.5%, and the mechanical strength increased by 83.7% under the optimal content of bSPEEK (30% w/w). And the proton conductivity in high temperature range (160 oC/0% RH) and low temperature range (80 oC/98% RH) increased by 43.8 % and 29.1%, respectively. The phosphoric acid loss in low temperature range decreased by 48%. In conclusion, the mechanical strength and proton conductivity of the co-blend membrane were improved as well as effectively inhibiting the loss of phosphoric acid.
宋洁瑞(1995-),女,甘肃兰州人,研究生,研究方向为燃料电池关键材料

参考文献:
[1]王保国. 新能源领域的质子交换膜研究与应用进展[J]. 膜科学与技术, 2010, 30(1): 1-8.
[2]Chandan A, Hattenberger M, El-Kharouf A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review[J]. J Power Sources, 2013, 231: 264-278.
[3]Rosli R E, Sulong A B, Daud W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. Int J Hydrogen Energy, 2017, 42(14): 9293-9314.
[4]Zhang X, Liu Q, Xia L, et al. Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range[J]. J Membrane Sci, 2019, 574: 282-298.
[5]Mohsin M, Raza R, Mohsin-Ul-Mulk M, et al. Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis[J]. Int J Hydrogen Energy, 2020, 45(45): 24093-24107.
[6]Oh H S, Cho Y, Lee W H, et al. Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells[J]. J Mater Chem A, 2013, 1(7).
[7]Aili D, Zhang J, Dalsgaard Jakobsen M T, et al. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C[J]. J Mater Chem A, 2016, 4(11): 4019-4024.
[8]Lee K S, Spendelow J S, Choe Y-K, et al. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nat Energy, 2016, 1(9): 16120.
[9]Tang H, Geng K, Hu Y, et al. Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell[J]. J Membrane Sci, 2020, 605.
[10]Giffin G A, Galbiati S, Walter M, et al. Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells[J]. J Membrane Sci, 2017, 535: 122-131.
[11]郭宇星 沈春晖, 高山俊, 等. 侧链磺化聚醚醚酮质子交换膜的制备及性能[J]. 膜科学与技术, 2020, 40(4): 34-40.
[12]Pang J, Zhang H, Li X, et al. Low Water Swelling and High Proton Conducting Sulfonated Poly(arylene ether) with Pendant Sulfoalkyl Groups for Proton Exchange Membranes[J]. Macromol Rapid Comm, 2007, 28(24): 2332-2338.
[13]Huang B, Wang X, Fang H, et al. Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity[J]. Mater Lett, 2019, 234: 354-356.
[14]Akay R G, Ata K C, Kad?o?lu T, et al. Evaluation of SPEEK/PBI blend membranes for possible direct borohydride fuel cell (DBFC) application[J]. Int J Hydrogen Energy, 2018, 43(40): 18702-18711.
[15]李猛猛, 董杰, 甘锋, 等. 含苯并双咪唑高阻燃共聚聚酰亚胺薄膜的制备及其性能研究[J]. 合成纤维工业, 2019, 42(3): 24.
[16]Chiang Y C, Tsai D-S, Liu Y-H, et al. PEM fuel cells of poly(2,5-benzimidazole) ABPBI membrane electrolytes doped with phosphoric acid and metal phosphates[J]. Mater Chem Phys, 2018, 216: 485-490.
[17]Hooshyari K, Rezania H, Vatanpour V, et al. High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells[J]. J Membrane Sci, 2020, 612.
[18]Yang J, Li X, Shi C, et al. Fabrication of PBI/SPOSS hybrid high-temperature proton exchange membranes using SPAEK as compatibilizer[J]. J Membrane Sci, 2021, 620.
[19]Zhou L, Zhu J, Lin M, et al. Tetra-alkylsulfonate functionalized poly(aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction[J]. J Energy Chem, 2020, 40: 57-64.
[20]Fukuhara L, Kado N, Kosugi K, et al. Preparation of polymer electrolyte membrane with nanomatrix channel through sulfonation of natural rubber grafted with polystyrene[J]. Solid State Ionics, 2014, 268: 191-197.
[21]Hazarika M, Jana T. Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer[J]. Eur Polym J, 2013, 49(6): 1564-1576. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号