纳米片修饰铜中空纤维膜的制备及电芬顿降解苯酚性能研究
作者:史咏玄,于洪涛,董应超
单位: 工业生态与环境教育部重点实验室,大连理工大学 环境学院,大连 116000
关键词: 膜分离技术;金属铜膜;电增强膜过程;污染物
出版年,卷(期):页码: 2022,42(1):10-17

摘要:
 通过湿法纺丝-气氛烧结技术制备了中空纤维金属铜膜,使用电化学氧化法构筑了氧化铜垂直纳米片结构,并研究了其电芬顿降解苯酚的性能。重点探究了纺丝参数(外凝固浴乙醇含量和氮气压力)和烧结温度对铜中空纤维膜结构、孔径、机械强度等的影响。探究了阳极氧化时间和表面活性剂浓度对氧化铜纳米片结构的形貌的影响。在最佳条件下,即阳极氧化时间为60 s,电流密度为15 A·cm-2,电解液中添加少量的0.5 g·L-1 聚乙二醇时,获得了形态明显、致密和规则的氧化铜纳米片结构。在处理苯酚废水(20 ppm)过程中,与未改性的铜膜相比,纳米片结构的构筑使矿化效率从5%增加到60%,电流效率从3%增加到8.6%。
 Porous copper metallic hollow fiber membrane was prepared via dry-wetting spinning and atmosphere-sintering technique and followed by anodic oxidation for the construction of nanosheet copper oxide. Then the degradation performance for phenol was studied via electro-Fenton process. The effects of spinning parameters (ethanol content in external coagulation bath and nitrogen pressure) and sintering temperature on the structure, pore size and mechanical strength were investigated for copper hollow fiber membranes. The effects of oxidation time, current density and surfactant concentration on the morphology of nanosheet copper oxide was then investigated. The results showed that the optimized copper hollow fiber membranes were obtained with good permeability, which was higher than other ceramic membranes. Dense and regular nanosheets were produced at anodic oxidation time of 60 s, the current density of 15 A·cm-2 and 0.5 g·L-1 PEG. Compared to unmodified copper membranes, the mineralization efficiency increased from 5% to 60%,while the current efficiency increased from 3% to 8.6% after the construction of copper oxide nanosheets.
史咏玄(1996-03),男,辽宁,丹东,硕士,研究方向电增强膜分离

参考文献:
 [1] Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411): 313-319.
[2] Godri Pollitt K J, Kim J-H, Peccia J, et al. 1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs[J]. Science of The Total Environment, 2019, 690: 853-866.
[3] Liu Y, Gao G, Vecitis C D. Prospects of an electroactive carbon nanotube membrane toward environmental applications[J]. Acc Chem Res, 2020, 53(12): 2892-2902.
[4] Feng Y, Yang L, Liu J, et al. Electrochemical technologies for wastewater treatment and resource reclamation[J]. Environ Sci : Water Res Technol, 2016, 2(5): 800-831.
[5] Mao R, Li N, Lan H, et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene–Cu foam electrode via direct cathodic reduction and atomic H*[J]. Environ Sci Technol, 2016, 50(7): 3829-3837.
[6] Duan W, Ronen A, Walker S, et al. Polyaniline-coated carbon nanotube ultrafiltration membranes: Enhanced anodic stability for in situ cleaning and electro-oxidation processes[J]. ACS Appl Mater Interfaces, 2016, 8(34): 22574.
[7] Chen S, Wang G, Li S, et al. Porous carbon membrane with enhanced selectivity and antifouling capability for water treatment under electrochemical assistance[J]. J Colloid Interface Sci, 2020, 560: 59-68.
[8] Trellu C, Péchaud Y, Oturan N, et al. Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling[J]. Appl Catal B, 2016, 194: 32-41.
[9] Perry S C, Pangotra D, Vieira L, et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen[J]. Nat Rev Chem, 2019, 3(7): 442-458.
[10] Olvera-Vargas H, Rouch J-C, Coetsier C, et al. Dynamic cross-flow electro-Fenton process coupled to anodic oxidation for wastewater treatment: Application to the degradation of acetaminophen[J]. Sep Purif Technol, 2018, 203: 143-151.
[11] Zhu Q, Hinkle M, Kim D J, et al. Modular hydrogen peroxide electrosynthesis cell with anthraquinone-modified polyaniline electrocatalyst[J]. ACS ES&T Engg, 2021, 1(3): 446-455.
[12] Han Y-F, Chen F, Ramesh K, et al. Preparation of nanosized Mn3O4/SBA-15 catalyst for complete oxidation of low concentration EtOH in aqueous solution with H2O2[J]. Appl Catal B, 2007, 76(3): 227-234.
[13] Saputra E, Muhammad S, Sun H, et al. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J]. J Colloid Interface Sci, 2013, 407: 467-473.
[14] Nieto-Juarez J I, Pierzch?a K, Sienkiewicz A, et al. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight[J]. Environ Sci Technol, 2010, 44(9): 3351-3356.
[15] Si Y, Sun C, Li D, et al. Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment[J]. Environ Sci Technol, 2020, 54(14): 9074-9082.
[16] Chen M, Zhu L, Dong Y, et al. Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment[J]. ACS Sustainable Chem Eng, 2016, 4(4): 2098-2106.
[17] Dong Y, Ma L, Tang C, et al. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes[J], Nano Lett, 2018, 18(9): 5514-5521.
[18] Li L, Chen M, Dong Y, et al. A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method[J], J Eur Ceram Soc 2018, 36(8): 2057-2066.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号