臭氧预处理蛋白质对聚醚砜超滤膜污染行为的影响研究
作者:苗瑞,葛瑞飞,王宇鹏,马炳鹏,杨子晗,王磊
单位: 西安建筑科技大学环境与市政工程学院,陕西省膜分离重点实验室,陕西省环境工程重点实验室,西北水资源与环境生态教育部重点实验室,西安 710055
关键词: 超滤膜污染;臭氧预处理;二硫键;相对尺寸
出版年,卷(期):页码: 2022,42(1):121-128

摘要:
 本研究选用牛血清蛋白 (BSA) 代表超滤膜典型污染物[收稿日期:2021-06-11;修改稿收到日期:2021-06-23
基金项目:国家自然科学基金面上项目(52070150);陕西省技术创新引导专项(2018HJCG-18);膜分离技术研发与成果推广平台(Z20190487)
第一作者简介:苗瑞(1986-),女,陕西榆林人,副教授,学历博士,研究方向为膜法水处理技术,E-mail:395832936@qq.com
通讯作者,E-mail:wl0178@126.com],通过考察臭氧预处理前后污染层结构特征、污染物在膜面吸附累积及作用力变化特征,结合宏观膜污染行为,解析臭氧预处理对不同孔径超滤膜BSA污染行为的影响机制。结果表明,臭氧预处理后,无论BSA尺寸大于、小于或接近膜孔尺寸,膜污染速率以及不可逆污染幅度皆明显加剧,说明臭氧氧化对污染物与膜孔相对尺寸的影响并不是其影响膜污染行为的关键因素。而臭氧预处理加剧膜污染的根本原因是促进了BSA分子间二硫键的形成。臭氧预处理后,共价二硫键的形成有效掩盖了静电作用力、氢键及疏水力的变化,促进了BSA在膜面的吸附累积并形成致密无孔的污染层,最终引起较为严重的膜污染。
 In this study, bovine serum protein (BSA) was selected to represent the typical organic foulants of ultrafiltration membranes. Before and after pre-ozonation, the fouling layer structure, the adsorption behavior of foulants onto membrane surface and the interaction force of foulants at membrane surface were investigated. All these were combined with the results of macro membrane fouling behavior to unravel the influence mechanism of pre-ozonation on the protein fouling of ultrafiltration membranes with different pore size. 
苗瑞(1986-),女,陕西榆林人,副教授,学历博士,研究方向为膜法水处理技术

参考文献:
 [1] 侯春光, 文剑平, 庞志广,等. 耐污染超滤膜的研究进展[J]. 膜科学与技术, 2021, 41(02):157-168.
[2] 高倩, 张崇淼, 魏样,等. 饮用水超滤处理中的膜污染及减缓技术研究进展[J]. 中国给水排水, 2020, 36(18):13-18.
[3] 班福忱, 杨诗源. 水处理中超滤膜污染及其应对方式研究进展[J]. 水处理技术, 2021, 47(04):15-19.
[4] 张娟牛, 豫海, 张自力,等. 超滤膜短流程工艺处理南水北调原水的运行效能[J]. 中国给水排水, 2020, 36(23):37-41.
[5] 王旭东,石彩霞, 廖正伟,等. 微絮凝对腐殖酸超滤过程膜污染的减缓特性[J]. 环境科学, 2018, 39(09):4249-4256. 
[6] 冯晓娜, 熊若晗, 马文结,等. 陶瓷超滤膜分离水中天然有机物的膜污染研究[J]. 给水排水, 2020, 56(S2):136-141.
[7] Cheng X, Liang H, Ding A, et al. Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions:Membrane fouling mitigation, prediction and mechanism[J]. Journal of Membrane Science, 2016, 505:15-25.
[8] 卢伟, 杨子晗, 王磊,等. 臭氧预氧化对蛋白类污染物超滤膜污染的影响研究[J]. 工业水处理, 2021, 41(02):57-61.
[9] Song J, Zhang Z, Zhang X. A comparative study of pre-ozonation and in-situ ozonation on mitigation of ceramic UF membrane fouling caused by alginate[J]. Journal of Membrane Science, 2017, 538:254-262. 
[10] Yu W, Liu T, Crawshaw J, et al. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: mechanisms and mitigation by pre-ozonation and pH[J]. Water Research, 2018, 139:353–362.
[11] Yu W, Zhang D, Graham N J D. Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size[J]. Water Research, 2017, 120:146-155.
[12] Miao R, Wang L, Zhu M, et al. Effect of Hydration Forces on Protein Fouling of Ultrafiltration Membranes: The Role of Protein Charge, Hydrated Ion Species, and Membrane Hydrophilicity[J]. Environmental Science & Technology, 2017, 51(1):167-174.
[13] Careche M, Alvarez C, Tejada M. Suwari and kamaboko sardine gels effect of heat treatment on solubility of networks[J]. Journal of Agricultural and Food Chemistry, 1995, 43:1002-1010.
[14] Gómez-Guillén M C, Border??as A J, Montero P. Chemical interactions of nonmuscle proteins in the network of sardine (Sardina pilchardus) muscle gels[J]. LWT-Food Science and Technology, 1997, 30:602-608.
[15] Tang S, Zhang Z, Zhang X. New insight into the effect of mixed liquor properties changed by pre-ozonation on ceramic UF membrane fouling in wastewater treatment[J]. Chemical Engineering Journal, 2017, 314:670-680.
[16] Yin Z, Wen T, Li Y, et al. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: the roles of Ca2+ and Mg2+[J]. Water Research, 2020, 171:115437. 
[17] Shao J, Hou J, Song H. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes[J]. Water Research, 2011, 45:473-482.
[17] Ma B, Xue W, Li W, et al. Integrated Fe-based floc-membrane process for alleviating ultrafiltration membrane fouling by humic acid and reservoir water[J]. Journal of Membrane Science, 2018, 563:873-881.
[19] Lin T, Lu Z, Chen W. Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach[J]. Journal of Membrane Science, 2014, 461:49-58.
[20] Zhang Z, Yang Y, Tang X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry, 2015, 188:111-118.
[21] Yamamura H, Kimura K, Okajima T, et al. Affinity of functional groups for membrane surfaces implications for physically irreversible fouling[J]. Environmental Science & Technology, 2008, 42:5310-5315.
[22] Shen H, Elmore J S, Zhao M, et al. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds[J]. Food Chemistry, 2020, 329:127032.
[23] Sedmak J J, Grossberg S E. A rapid, sensitive, and versatile assay for protein using coomassie brilliant blue G250[J]. Academic Press, 1977, 79:544-552.
[24] Viitala T, Kallioinen M, Mänttäri M, et al. Characterization of membrane–foulant interactions with novel combination of Raman spectroscopy, surface plasmon resonance and molecular dynamics simulation[J]. Separation and Purification Technology, 2018, 205:263–272.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号