蝶烯基微孔聚合物气体分离膜的研究进展
作者:刘懿韬,蔡治礼,单玲珑,罗双江
单位: 1. 沈阳化工大学 化学工程学院,沈阳 110000; 2.中国科学院 过程工程研究所,北京 100089
关键词: 气体分离膜;微孔聚合物;三蝶烯;五碟烯;自由体积
出版年,卷(期):页码: 2022,42(1):145-154

摘要:
 在气体分离膜领域,传统膜材料常面临着气体渗透性与选择性相互制约的难题,寻求新型聚合物膜材料并探寻分子设计规律成为首要任务。本文综述了一类新型聚合物——蝶烯基聚合物近十年内的研究进展,着重阐述了蝶烯分子在不同种类气体分离膜材料 (聚酰亚胺、聚苯并噁唑和自具微孔聚合物等)的结构、调控方式及气体分离性能,考察了碟烯结构在优化气体分离膜微孔结构和提升气体分离性能的贡献和规律,为新一代高性能聚合物气体分离膜的设计及研发提供指导。
 In the field of membrane-mediated gas separation, traditional polymeric membrane materials are often challenged by a trade-off between gas permeability and selectivity, thus novel polymeric membrane materials with precise molecule design and high gas separation performance are highly demanded. This paper reviewed the research progress of novel iptycene-based polymeric gas separation membranes in the past decades. In particular, the membrane structure, structure-performance relationship and gas separation properties of iptycene-based polyimides, polybenzoxazoles and polymers of intrinsic microporosity are summarized and discussed. This paper will provide guidance for the design and development of the next generation of high performance polymeric gas separation membranes.
刘懿韬(1994年6月生),女,河北张家口人,硕士研究生,研究方向:膜材料设计与传质机理

参考文献:
 [1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature, 532 (2016) 435-437.
[2] 董子丰, 气体膜分离技术在石油工业中的应用, 膜科学与技术, 3 (2000) 38-43.
[3] Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau, Y. Han, Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations, Mater. Today Nano, 3 (2018) 69-95.
[4] 徐仁贤, 气体分离膜应用的现状和未来, 膜科学与技术, 23 (2003) 123-128.
[5] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165-185.
[6] R.L. Burns, W.J. Koros, Defining the challenges for C3H6/C3H8 separation using polymeric membranes, J. Membr. Sci., 211 (2003) 299-309.
[7] L.M. Robeson, The upper bound revisited, J. Membr. Sci., 320 (2008) 390-400.
[8] C. Zhang, Y. Dai, J.R. Johnson, O. Karvan, W.J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations, J. Membr. Sci., 389 (2012) 34-42.
[9] R. Swaidan, B. Ghanem, I. Pinnau, Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations, ACS Macro Lett., 4 (2015) 947-951.
[10] B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity, Energy Environ. Sci., 12 (2019) 2733-2740.
[11] 威廉·卡洛斯, 膜领域所面临的机遇和挑战——侧重于气体分离方面(英文), 膜科学与技术, 04 (2006) 4-8.
[12] L. Zhao, Z. Li, T. Wirth, Triptycene derivatives: synthesis and applications, Chem. Lett., 39 (2010) 658-667.
[13] Y. Jiang, C.F. Chen, Recent developments in synthesis and applications of triptycene and pentiptycene derivatives, Eur. J. Org. Chem., 2011 (2011) 6377-6403.
[14] Y.J. Cho, H.B. Park, High performance polyimide with high internal free volume elements, Macromol. Rapid Commun., 32 (2011) 579-586.
[15] J.R. Wiegand, Z.P. Smith, Q. Liu, C.T. Patterson, B.D. Freeman, R. Guo, Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes, J. Mater. Chem. A, 2 (2014) 13309-13320.
[16] J.R. Weidman, S. Luo, C.M. Doherty, A.J. Hill, P. Gao, R. Guo, Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films, J. Membr. Sci., 522 (2017) 12-22.
[17] F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller, I. Pinnau, Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides, J. Membr. Sci., 490 (2015) 321-327.
[18] Z. Tian, B. Cao, P. Li, Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties, J. Membr. Sci., 560 (2018) 87-96.
[19] C. Zhang, L. Fu, Z. Tian, B. Cao, P. Li, Post-crosslinking of triptycene-based Tröger's base polymers with enhanced natural gas separation performance, J. Membr. Sci., 556 (2018) 277-284.
[20] S. Luo, J.R. Wiegand, B. Kazanowska, C.M. Doherty, K. Konstas, A.J. Hill, R. Guo, Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport, Macromolecules, 49 (2016) 3395-3405.
[21] S. Luo, Q. Liu, B. Zhang, J.R. Wiegand, B.D. Freeman, R. Guo, Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, J. Membr. Sci., 480 (2015) 20-30.
[22] S. Luo, J. Liu, H. Lin, B.A. Kazanowska, M.D. Hunckler, R.K. Roeder, R. Guo, Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes, J. Mater. Chem. A, 4 (2016) 17050-17062.
[23] F. Alghunaimi, B. Ghanem, Y. Wang, O. Salinas, N. Alaslai, I. Pinnau, Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor, Polymer, 121 (2017) 9-16.
[24] S. Luo, Q. Zhang, L. Zhu, H. Lin, B.A. Kazanowska, C.M. Doherty, A.J. Hill, P. Gao, R. Guo, Highly selective and permeable microporous polymer membranes for hydrogen purification and CO2 removal from natural gas, Chem. Mater., 30 (2018) 5322-5332.
[25] A. Yerzhankyzy, B.S. Ghanem, Y. Wang, N. Alaslai, I. Pinnau, Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide, J. Membr. Sci., 595 (2020).
[26] 李凯华、朱芷杨、程博闻、李建新、马小华, 自聚微孔聚合物气体分离膜材料研究进展, 膜科学与技术, v.40;No.204 (2020) 122-132.
[27] B.S. Ghanem, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Energy-efficient hydrogen separation by ab-type ladder-polymer molecular sieves, Adv. Mater., 26 (2014) 6696-6700.
[28] I. Rose, C.G. Bezzu, M. Carta, B. Comesaña-Gándara, E. Lasseuguette, M.C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J.C. Jansen, Kyle E. Hart, T.P. Liyana-Arachchi, C.M. Colina, N.B. McKeown, Polymer ultrapermeability from the inefficient packing of 2D chains, Nat. Mater., 16 (2017) 932-937.
[29] D.A. Paige, M.A. Siegler, J.K. Harmon, G.A. Neumann, E.M. Mazarico, D.E. Smith, M.T. Zuber, E. Harju, M.L. Delitsky, S.C. Solomon, Thermal stability of volatiles in the north polar region of Mercury, Science, 339 (2013) 300-303.
[30] M. Carta, M. Croad, R. Malpass-Evans, J.C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lan?, N.B. McKeown, Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers, Adv. Mater., 26 (2014) 3526-3531.
[31] Y. He, F.M. Benedetti, S. Lin, C. Liu, Y. Zhao, H.Z. Ye, T. Van Voorhis, M.G. De Angelis, T.M. Swager, Z.P. Smith, Polymers with side chain porosity for ultrapermeable and plasticization resistant materials for gas separations, Adv. Mater., 31 (2019) e1807871.
[32] X. Ma, Z. Zhu, W. Shi, W. Ji, J. Li, Y. Wang, I. Pinnau, Unprecedented gas separation performance of a difluoro-functionalized triptycene-based ladder PIM membrane at low temperature, J. Mater. Chem. A, 9 (2021) 5404-5414.
[33] J. Weber, Q. Su, M. Antonietti, A. Thomas, Exploring polymers of intrinsic microporosity–microporous, soluble polyamide and polyimide, Macromol. Rapid Commun., 28 (2007) 1871-1876.
[34] B.S. Ghanem, N.B. McKeown, P.M. Budd, J.D. Selbie, D. Fritsch, High‐performance membranes from polyimides with intrinsic microporosity, Adv. Mater., 20 (2008) 2766-2771.
[35] B.S. Ghanem, N.B. McKeown, P.M. Budd, N.M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova, A. Tokarev, Y. Yampolskii, Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides, Macromolecules, 42 (2009) 7881-7888.
[36] B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation, Adv. Mater., 26 (2014) 3688-3692.
[37] R. Swaidan, B. Ghanem, M. Al-Saeedi, E. Litwiller, I. Pinnau, Role of intrachain rigidity in the plasticization of intrinsically microporous triptycene-based polyimide membranes in mixed-gas CO2/CH4 separations, Macromolecules, 47 (2014) 7453-7462.
[38] R. Swaidan, M. Al-Saeedi, B. Ghanem, E. Litwiller, I. Pinnau, Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes, Macromolecules, 47 (2014) 5104-5114.
[39] N. Alaslai, B. Ghanem, F. Alghunaimi, I. Pinnau, High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation, Polymer, 91 (2016) 128-135.
[40] B. Ghanem, F. Alghunaimi, X. Ma, N. Alaslai, I. Pinnau, Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3?-dimethylnaphthidine, Polymer, 101 (2016) 225-232.
[41] B.S. Ghanem, F. Alghunaimi, Y. Wang, G. Genduso, I. Pinnau, Synthesis of highly gas-permeable polyimides of intrinsic microporosity derived from 1,3,6,8-tetramethyl-2,7-diaminotriptycene, ACS Omega, 3 (2018) 11874-11882.
[42] R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity, Macromolecules, 48 (2015) 6553-6561.
[43] S. Luo, K.A. Stevens, J.S. Park, J.D. Moon, Q. Liu, B.D. Freeman, R. Guo, Highly CO2-selective gas separation membranes based on segmented copolymers of poly(ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments, ACS Appl. Mater. Interfaces, 8 (2016) 2306-2317.
[44] A. Pournaghshband Isfahani, M. Sadeghi, K. Wakimoto, B.B. Shrestha, R. Bagheri, E. Sivaniah, B. Ghalei, Pentiptycene-based polyurethane with enhanced mechanical properties and CO2-plasticization resistance for thin film gas separation membranes, ACS Appl. Mater. Interfaces, 10 (2018) 17366-17374.
[45] T. Corrado, Z. Huang, J. Aboki, R. Guo, Microporous polysulfones with enhanced separation performance via integration of the triptycene moiety, Ind. Eng. Chem. Res., 59 (2019) 5351-5361.
[46] G. Genduso, B.S. Ghanem, Y. Wang, I. Pinnau, Synthesis and gas-permeation characterization of a novel high-surface area polyamide derived from 1,3,6,8-tetramethyl-2,7-diaminotriptycene: Towards polyamides of intrinsic microporosity (pim-pas), Polymers, 11 (2019).
[47] S. Dai, R. Liao, H. Zhou, W. Jin, Synthesis of triptycene-based linear polyamide membrane for molecular sieving of N2 from the VOC mixture, Sep. Purif. Technol., 252 (2020).
[48] Q. Zhang, S. Luo, J.R. Weidman, R. Guo, Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90), Polymer, 131 (2017) 209-216.
[49] Q. Zhang, S. Luo, J. Weidman, R. Guo, Surface modification of ZIF‐90 with triptycene for enhanced interfacial interaction in mixed‐matrix membranes for gas separation, J. Polym. Sci., 58 (2020) 2675-2687.
[50] A. Fuoco, B. Comesaña-Gándara, M. Longo, E. Esposito, M. Monteleone, I. Rose, C.G. Bezzu, M. Carta, N.B. McKeown, J.C. Jansen, Temperature dependence of gas permeation and diffusion in triptycene-based ultrapermeable polymers of intrinsic microporosity, ACS Appl. Mater. Interfaces, 10 (2018) 36475-36482.
[51] I. Rose, M. Carta, R. Malpass-Evans, M.-C. Ferrari, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Highly permeable benzotriptycene-based polymer of intrinsic microporosity, ACS Macro Lett., 4 (2015) 912-915.
[52] S. Luo, Q. Zhang, Y. Zhang, K.P. Weaver, W.A. Phillip, R. Guo, Facile synthesis of a pentiptycene-based highly microporous organic polymer for gas storage and water treatment, ACS Appl. Mater. Interfaces, 10 (2018) 15174-15182.
[53] H. Luo, J. Aboki, Y. Ji, R. Guo, G.M. Geise, Water and salt transport properties of triptycene-containing sulfonated polysulfone materials for desalination membrane applications, ACS Appl. Mater. Interfaces, 10 (2018) 4102-4112.
[54] J. Aboki, B. Jing, S. Luo, Y. Zhu, L. Zhu, R. Guo, Highly proton conducting polyelectrolyte membranes with unusual water swelling behavior based on triptycene-containing poly(arylene ether sulfone) multiblock copolymers, ACS Appl. Mater. Interfaces, 10 (2018) 1173-1186.
[55] L.C.H. Moh, J.B. Goods, Y. Kim, T.M. Swager, Free volume enhanced proton exchange membranes from sulfonated triptycene poly(ether ketone), J. Membr. Sci., 549 (2018) 236-243.
[56] T. Wang, T. Li, J. Aboki, R. Guo, Disulfonated poly(arylene ether sulfone) random copolymers containing hierarchical iptycene units for proton exchange membranes, Front. Chem., 8 (2020) 674.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号