多孔SiC陶瓷表面的超疏水改性及其对油-固体系的分离性能
作者:苏航,谢子萱,漆虹
单位: 南京工业大学膜科学技术研究所,材料化学工程国家重点实验室,江苏 南京 210009
关键词: 多孔碳化硅陶瓷;超疏水;ZnO;油-固分离
出版年,卷(期):页码: 2022,42(2):8-15

摘要:
 以二水醋酸锌和氨水为原料,采用化学浴沉积法在平均孔径为250 nm的多孔SiC陶瓷表面构造花状ZnO微纳结构,并用正辛基三乙氧基硅烷接枝改性。考察了Zn2+浓度、反应温度和反应时间对沉积在多孔陶瓷表面ZnO形貌的影响,进而考察其对多孔陶瓷表面超疏水性能的影响。对比了超疏水改性前后多孔陶瓷的表面性质及其油-固分离性能。结果表明,花状ZnO在多孔SiC陶瓷表面沉积的最佳条件是:Zn2+浓度为75 mmol/L,反应温度为96 ℃,反应时间为3 h。此时硅烷接枝改性后多孔陶瓷表面超疏水效果最好,其表面水接触角和滚动接触角分别为173°±2.5°和2.5°±1°。在油-固分离实验中,超疏水多孔SiC陶瓷对固体炭黑具有良好的截留性能,当跨膜压差为0.25 MPa时,其稳态通量为498.3 L/(m2·h)。与空白样相比,通量提高了53.6 %。
 In this paper, using zinc acetate dihydrate and ammonia as raw materials, ZnO nanoflower (NF) structure was fabricated on the surface of porous SiC ceramics with an average pore size of 250 nm by chemical bath deposition, and then grafted with n-octyltriethoxysilane. Effects of Zn2+ concentration, reaction temperature and reaction time on the morphology and superhydrophobic properties of porous SiC ceramic surface were investigated. The wettability and oil-solid separation performance of the blank sample and superhydrophobic porous SiC ceramics were investigated, respectively. Results showed that the optimal conditions for ZnO NFs deposited on porous SiC ceramic surface were as follows: Zn2+ concentration of 75 mmol/L, reaction temperature of 96 ℃, reaction time of 3 h. In this case, the surface of porous ceramics grafted with silane provided with the best superhydrophobic properties. The surface water contact angle (WCA) and rolling contact angle were 173°±2.5°and 2.5°±1°, respectively. In the experiment of oil-solid separation, superhydrophobic porous SiC ceramics exhibited excellent retention towards solid carbon. The steady-state flux was 498.3 L/(m2·h)(measured at a transmembrane pressure of 0.25 MPa), which was 53.6 % higher in comparision with the blank sample.
苏航(1996-),男,江苏南京人,硕士生,主要从事疏水陶瓷膜的制备及其在油水分离中的应用,E-mail:931170477@qq.com

参考文献:
 [1] 李秀秀, 魏逸彬, 谢子萱,等. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(07): 334-344.
[2] Song H M, Chen C, Shui X X, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. J Membr Sci, 2019, 573: 126-134.
[3] Li H, Zhou C P, LI C S, et al. Superhydrophilic fluorinated polyarylate membranes via in situ photocopolymerization and microphase separation for efficient separation of oil-in-water emulsion[J]. RSC Adv, 2019, 9(2): 958-962.
[4] 刘君腾, 卿伟华, 任钟旗, 等. 超疏水聚四氟乙烯丝网用于原油脱水的研究[J]. 高校化学工程学报, 2012, 26(4): 563-568.
[5] Wei Y B, QI H, Gong X, et al. Specially wettable membranes for oil-water separation[J]. Adv Mater Interfaces, 2018,5(23):1800576.
[6] Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. J Am Chem Soc, 2016, 138(6): 1727-1748.
[7] Ahmad N A, Leo C P, Ahmad A L. Superhydrophobic alumina membrane by steam impingement: minimum resistance in microfiltration[J]. Separ Purif Technol, 2013,107: 187-194.
[8] Su C, Xu Y, Zhang W, et al. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water[J]. Appl Surf Sci, 2012,258: 2319-2323.
[9] Fatima U, Zafar M, Khan A U, et al. Facile synthesis of transparent glass surfaces via hydrothermal route for superhydrophobic performance[J]. J Nanosci Nanotechnol, 2021, 21(9):4824-4829. 
[10] Liu M, Wang S, Jiang L. Nature-inspired superwettability systems[J]. Nat Rev Mater, 2017, 2(7): 17036.
[11] Feng X Q, Gao X, Wu Z, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis[J]. Langmuir, 2007, 23(9): 4892.
[12] Kim H, Lee C, Kwon J, et al. Fabrication of transparent superhydrophobic surface from ZnO nanorods[J]. J Nanosci Nanotechnol, 2021, 21(3): 1772-1778.
[13] Li H, Lin X, Wang H. Fabrication and evaluation of nano-TiO2 superhydrophobic coating on asphalt pavement[J]. Materials, 2021, 14(1):211.
[14] Kaviyarasu K, Mola G T, Oseni S O, et al. ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber[J]. J Mat Sci, 2019, 30(1): 147–158.
[15] Fan T, Qian Q H, Hou Z H, et al. Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method[J]. Carbohyd Polym, 2018 ,200: 63-71.
[16] Gao N W, Zhou Z, Wei J. Superhydrophobic ceramic membranes with nanostructured rough coating for efficient water-in-oil emulsions separation[J]. Chem Lett, 2018, 47(12):1472-1474.
[17] Wei Y B, Xie Z X, QI H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation[J]. J Membr Sci, 2020, 601: 117842.
[18] Demianets, L. Mechanism of zinc oxide single crystal growth under hydrothermal conditions[J]. Ann Chim-Sci Mat, 2001, 26(1): 193-198.
[19] Demianets L N, Kostomarov D V, Kuz-mina I P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions[J]. Inorg Mat, 2002, 38(2): 124-131.
[20] Joo j, Chow B Y, Prakash M, et al. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis[J]. Nat Mat, 2011, 10(8): 596-601.
[21] Zhang Y Z, Wang X Y, Wang C H, et al. Facile preparation of flexible and stable superhydrophobic non-woven fabric for efficient oily wastewater treatment[J]. Surf Coat Technol, 357 (2019): 526-534.
[22] Raha J, Haldar N, Ghosh C K. Intense orange emission from hydrothermally synthesized ZnO flower-like structure: effect of charge carrier-LO phonon interaction on emission characteristics[J]. Appl Phys A: Mater. Sci. Process, 2021, 127(3):163. 
[23] Sudeepthi A, Yeo L, Sen A K. Cassie-Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves[J]. Appl Phys Lett, 2020, 116(9):093704.
[24] Rohrs C, Azimi A, He P. Wetting on micropatterned surfaces: partial penetration in the Cassie state and Wenzel deviation theoretically explained[J]. Langmuir, 2019, 35(47): 15421-15430.
[25] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2003, 19(4): 1249-1253.
[26] Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films[J]. Surf Coat Technol, 2005, 191(2-3): 155-160.
[27] Wang T, Yun Y, Wang M, et al. Superhydrophobic ceramic hollow fiber membrane planted by ZnO nanorod-array for high-salinity water desalination[J]. J Taiwan Inst Chem Eng, 2019, 105: 17-27.
[28] Chung J, Lee S, Yong H, et al. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires [J]. J Korean Phys Soc, 2016, 68(3): 452-455.
[29] 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用[M]// 北京: 化学工业出版社, 2003. 129-130.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号