铁基MOF材料对高藻水超滤过程中膜污染的影响
作者:瞿芳术,韦光梅,邓良,叶林雄,荣宏伟,余华荣,杨枝盟
单位: 广州大学土木工程学院,广州510006
关键词: 铁基金属有机骨架材料;高藻水;超滤;膜污染
出版年,卷(期):页码: 2022,42(3):135-144

摘要:
超滤技术可以完全除藻,但是膜污染仍是限制超滤技术发展的核心问题。本文拟采用铁基金属有机骨架材料(Metal-Organic Frameworks, MOFs)预处理控制藻类膜污染,考察了MIL-88A吸附以及MIL-88A活化过硫酸盐(Persulfate, PS)对高藻水超滤过程中膜污染的影响。研究结果表明: MIL-88A预处理对超滤过程中膜通量下降具有明显的缓解作用,MIL-88A投加量由0mg/L增加至25mg/L时,末端比通量由0.17增加至0.46; MIL-88A预处理对不可逆膜污染的减缓效力约为50%,而随着MIL-88A浓度的增加,缓解不可逆污染的效力并未增强;MIL-88A预处理可以有效提高超滤处理高藻水过程中荧光组分的去除。此外,MIL-88A可以有效活化过硫酸盐,但无法有效控制高藻水超滤过程中的膜污染。
Ultrafiltration (UF) technology can completely remove algae, but membrane fouling is still the core problem restricting the development of  UF technology. In this paper, iron-based metal organic frameworks (MOFs) were used to control algae membrane fouling. The effects of MIL-88A adsorption and MIL-88A activated persulfate on membrane fouling during the algae-laden water treatment by ultrafiltration were investigated. The results showed that the pretreatment of MIL-88A could significantly alleviate the decline of membrane flux during ultrafiltration. When the dosage of MIL-88A increased from 0mg/L to 25mg/L, the terminal specific flux increased from 0.17 to 0.46; Meanwhile, the mitigation effect of MIL-88A pretreatment on irreversible membrane fouling was about 50%, but the mitigation effect did not increase with the increase of MIL-88A concentration; MIL-88A pre-treatment can effectively improve the removal of fluorescent components during the treatment of algae-laden water by ultrafiltration. Moreover, MIL-88A can effectively activate persulfate, but it can not effectively control membrane fouling during the treatment of algae-laden water by ultrafiltration.
瞿芳术(1984.09),男,副教授,籍贯:福建省宁德市,研究方向:主要从事膜法水处理技术研究

参考文献:
 
1. Bai L, Liang H, Crittenden J, Qu F, Ding A, Ma J, Du X, Guo S, Li G. Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. J MEMBRANE SCI 2015, 492: 400-411.
 2. Chang H, Liang H, Qu F, Ma J, Ren N, Li G. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition. J ENVIRON SCI-CHINA 2016, 43: 177-186.
 3. 陈禹志. 预氧化强化混凝-膜除藻工艺膜污染控制研究. 膜科学与技术 2016, 36(01): 104-108.
 4. 于金山, 李竞, 郭军科, 王丹, 张光辉, 顾平. 投加FeCl_3改善PAC四级逆流吸附-微滤工艺的膜污染研究. 膜科学与技术 2016, 36(06): 108-112.
 5. 瞿芳术, 杨枝盟, 周鸿, 荣宏伟, 赫俊国, 余华荣. 高锰酸钾预氧化对高藻水超滤过程中膜污染及锰沉积的影响. 膜科学与技术 2020, 40(06): 29-36.
 6. Cheng-Fang Lin YHAO. Ultrafiltration processes for removing humic substances effect of molecular weight fractions and PAC treatment. WATER RES 1999, 33(5): 1252-1264.
 7. Zhiquan Y, Xiaowen T, Jinna F, Shan H, Mingli F, Xiaojun N, Taiping Z, Heng L, An D, Xiaochi F. Flower-like BiOBr/UiO-66-NH 2 nanosphere with improved photocatalytic property for norfloxacin removal. CHEMOSPHERE 2018, 220.
 8. Chi H, Wan J, Ma Y, Wang Y, Ding S, Li X. Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater. J HAZARD MATER 2019, 377: 163-171.
 9. Fan G, Bao M, Zheng X, Hong L, Zhan J, Chen Z, Qu F. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms. J HAZARD MATER 2019, 367: 529-538.
10. 尚鸿飞, 鲁金明, 刘毅, 杨建华, 张艳. 金属有机骨架ZIF-67膜的制备和表征. 膜科学与技术 2021, 41(05): 73-78.
11. Kun-Yi Andrew Lin HCAC. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC ADV 2015.
12. Wang J, Wan J, Ma Y, Wang Y, Pu M, Guan Z. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. RSC Advances 2016(2016.6): 112502-112511.
13. 王小波, 瞿芳术, 王昊, 余华荣, 梁恒, 李圭白. 超滤膜处理高藻水过程中天然颗粒物对膜污染的影响. 膜科学与技术 2017, 37(06): 39-45.
14. Chia-Chi H, Andrew L Z. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration. J COLLOID INTERF SCI 2000, 232(2): 389-399.
15. Kang X, Yinghui M, Jianyu S, Mingyu W, Shuai L, Xiaomao W, Xia H, T. DW. An extended standard blocking filtration law for exploring membrane pore internal fouling due to rate-determining adsorption. SEP PURIF TECHNOL 2018, 212.
16. Liu H, Bruton TA, Doyle FM, Sedlak DL. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. ENVIRON SCI TECHNOL 2014, 48(17): 10330-10336.
17. Qu F, Liang H, Zhou J, Nan J, Shao S, Zhang J, Li G. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J MEMBRANE SCI 2014, 449: 58-66.
18. Yu H, Qu F, Liang H, Han Z, Ma J, Shao S, Chang H, Li G. Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. DESALINATION 2014, 337: 67-75.
19. Kun-Yi AL, Hsuan-Ang C. Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8). Water, Air, & Soil Pollution 2015, 226(2).
20. Li K, Qu F, Liang H, Shao S, Han Z, Chang H, Du X, Li G. Performance of mesoporous adsorbent resin and powdered activated carbon in mitigating ultrafiltration membrane fouling caused by algal extracellular organic matter. DESALINATION 2014, 336: 129-137.
21. Fan G, Chen Z, Wang B, Wu S, Luo J, Zheng X, Zhan J, You Y, Zhang Z. Photocatalytic Removal of Harmful Algae in Natural Waters by Ag/AgCl@ZIF-8 Coating under Sunlight. CATALYSTS 2019, 9(8): 698.
22. Liu B, Qu F, Yu H, Tian J, Chen W, Liang H, Li G, Van der Bruggen B. Membrane Fouling and Rejection of Organics during Algae-Laden Water Treatment Using Ultrafiltration: A Comparison between in Situ Pretreatment with Fe(II)/Persulfate and Ozone. ENVIRON SCI TECHNOL 2018, 52(2): 765-774.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号