C/TiO2光催化自洁膜的制备及其对罗丹明B的降解
作者:崔瑛锴,李祥村,姜晓滨,吴雪梅,贺高红,肖武
单位: 大连理工大学 精细化工国家重点实验室,膜科学与技术研究开发中心,辽宁 大连 116024
关键词: 有序多孔;C/TiO2;光催化;自清洁;改性膜
出版年,卷(期):页码: 2022,42(4):33-42

摘要:
 以吡咯作为碳源,采用紫外自聚合-灼烧法制备了具有有序多孔结构的C/TiO2催化剂,有效提高了TiO2催化剂在可见光条件下的光响应能力与光利用率,从而提升TiO2催化剂对罗丹明B染料废水的降解率。经过实验比较得出C/TiO2-0.4在90 min内对罗丹明B达到91.80%的降解率。同时将C/TiO2-0.4掺入到PVDF膜液中,利用相转化法制备改性膜。在单次模拟太阳光降解测试中改性膜对罗丹明B的降解率达到了80.18%,在4次循环降解中,改性膜对罗丹明B的降解率稳定在60%以上。此外,在模拟太阳光照射下,改性膜能够在5 h内恢复至吸附前的状态,有利于其长时间循环使用。结果表明,负载有C/TiO2的光催化自洁膜在模拟太阳光条件下对罗丹明B染料废水的降解具有显著效果。
 A C/TiO2 catalyst with patterned porous structure was prepared by the ultraviolet self-polymerization-burning method with pyrrole as the carbon source. Which effectively improved the light response ability and light utilization efficiency of the TiO2 catalyst under visible light conditions, so as to improve the degradation rate of Rhodamine B dye in wastewater. After comparison of experiment data, it is concluded that the degradation rate of Rhodamine B by C/TiO2-0.4 can reach 91.80% within 90 min. At the same time, C/TiO2-0.4 was mixed into the PVDF membrane solution, and the modified membrane was prepared by the phase inversion method. In a single degradation test under simulated solar, the degradation rate of Rhodamine B by the modified membrane reached 80.18%. In the 4 cycles of degradation, the degradation rate of Rhodamine B by the modified membrane stabilized above 60%. In addition, under simulated sunlight, the modified membrane can be restored to the state before adsorption within 5 h, which is beneficial to its long-term recycling. The results show that the photocatalytic self-cleaning membrane loaded with C/TiO2 has a significant effect on the degradation of Rhodamine B dye wastewater under simulated sunlight conditions.
崔瑛锴(1997-),男,黑龙江齐齐哈尔人,硕士研究生,从事光催化水处理的研究,E-mail:cyk2523070824@163.com

参考文献:
 [1] Routoula E, Patwardhan S V. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential[J]. Environ Sci Technol, 2020, 54(2): 647-664.
[2] Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. J Environ Chem Eng, 2018, 6(4): 4676-4697.
[3] Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Appl Catal B-Environ, 2012, 125: 331-349.
[4] Saeed M, Muneer M, Haq A U, et al. Photocatalysis: an effective tool for photodegradation of dyes—A review[J]. Environ Sci Pollut R, 2022, 29: 293-311.
[5] Romanos G E, Athanasekou C P, Likodimos V, et al. Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment[J]. Ind Eng Chem Res, 2013, 52(39): 13938-13947.
[6] 余少彬,张铭泰,李希成,等. 新型复合纳米材料用于光催化降解染料废水的研究进展[J/OL]. 材料工程, 材料工程:1-11 [网络首发时间2021-06-04]. http://kns.cnki.net/kcms/detail/11.1800.TB.20210603.1521.004.html.
[7] Riaz S, Park S. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments[J]. J Ind Eng Chem, 2019, 84: 23-41.
[8] Zhang X, Wang D K, Lopez D R S, et al. Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment[J]. Chem Eng J, 2014, 236: 314-322.
[9] Shet A, Shetty K V. Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation[J]. Environ Sci Pollut R, 2016, 23(20): 20055-20064.
[10] 于然. TiO2光催化复合分离膜的制备及其在UV/H2O2协同作用下的水处理性能[D]. 大连:大连理工大学, 2018.
[11] Gan Q, Feng G, Liu X, et al. Self-assembly of mesoporous Bi-S-TiO2 composites for degradation of industrial dinitrotoluene solution under UV light[J]. Environ Sci Pollut R, 2017, 24(10): 9585-9593.
[12] 余立志,李京伟,林银河. 非金属掺杂改性纳米TiO2光催化性能研究进展[J]. 应用化工, 2019, 48(8): 1944-1948.
[13] Choi Y, Koo M S, Bokare A D, et al. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2[J]. Environ Sci Technol, 2017, 51(7): 3973-3981.
[14] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253-278.
[15] Song Y, Cho N, Lee M, et al. Photocatalytic activity of W-Doped TiO2 nanofibers for methylene blue dye degradation[J]. J Nanosci Nanotechno, 2016, 16(2): 1831-1833.
[16] Palanisamy B, Babu C M, Sundaravel B, et al. Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol[J]. J Hazard Mater, 2013, 252-253: 233-242.
[17] Mittal A, Mari B, Sharma S, et al. Non-metal modified TiO2: A step towards visible light photocatalysis[J]. J Mater Sci-Mater Electron, 2019, 30(4): 3186-3207.
[18] Fang W, Xing M, Zhang J. Modifications on reduced titanium dioxide photocatalysts: A review[J]. J Photochem Photobiol C-Photochem Rev, 2017, 32: 21-39.
[19] Wang S, Zhao L, Bai L, et al. Enhancing photocatalytic activity of disorder-engineered C/TiO2              and TiO2 nanoparticles[J]. J Mater Chem A, 2014, 2(20): 7439-7445.
[20] 徐杏. 吡啶类有机物衍生的C,N改性TiO2光催化产氢性能研究[D]. 杭州:浙江工业大学, 2019.
[21] 明海. TiO2及C/TiO2纳米材料的结构设计与光催化特性研究[D]. 苏州:苏州大学, 2012.
[22] 孙佳斯. 微球化及聚吡咯改性多孔TiO2催化性能[D]. 大连:大连理工大学, 2012.
[23] Mamba G, Mishra A. Advances in magnetically separable photocatalysts: Smart, recyclable materials for water pollution mitigation[J]. Catalysts, 2016, 6(6): 79.
[24] 王硕. FePc-TiO2与PVDF膜耦合处理染料废水[D]. 大连:大连理工大学, 2016.
[25] 陈黄锰,宋宏臣,王建明,等. 光催化-膜分离耦合工艺对腐殖酸的过滤机理研究[J]. 膜科学与技术, 2014, 34(06): 89-95.
[26] Sun X X, Liu G, Li R, et al. Polyporous PVDF/TiO2 photocatalytic composites for photocatalyst fixation, recycle, and repair[J]. J Am Ceram Soc, 2021, 104(12): 6290-6298.
[27] Li X, John V T, He G, et al. Shear induced formation of patterned porous titania with applications to photocatalysis[J]. Langmuir, 2009, 25(13): 7586-7593.
[28] Li X, Wu X, He G, et al. Microspheroidization treatment of macroporous TiO2 to enhance its recycling and prevent membrane fouling of photocatalysis–membrane system[J]. Chem Eng J, 2014, 251: 58-68.
[29] 薛倩. 乳化液膜法制备多孔TiO2复合材料[D]. 大连:大连理工大学, 2012.
[30] 江广兰. 有序大孔—介孔TiO2复合材料的制备及其性能研究[D]. 大连:大连理工大学, 2014.
[31] Liu R, Li H, Duan L, et al. In situ synthesis and enhanced visible light photocatalytic activity of C-TiO2 microspheres/carbon quantum dots[J]. Ceram Int, 2017, 43(12): 8648-8654.
[32] Liu J, Zhu W, Yu S, et al. Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity[J]. Carbon, 2014, 79: 369-379.
[33] 李慧泉. 锌系光催化剂的制备及应用[M]// 北京:中国书籍出版社, 2016.
[34] Zhang J, Tong H, Pei W, et al. Integrated photocatalysis-adsorption-membrane separation in rotating reactor for synergistic removal of RhB[J]. Chemosphere, 2021, 270: 129424.
[35] 杨春燕,王侨,张广山,等. 光催化复合超滤膜的制备与催化性能[J]. 中国环境科学, 2017, 37(12): 4564-4570.
[36] Mahlambi M M, Mahlangu O T, Vilakati G D, et al. Visible light photodegradation of rhodamine B dye by two forms of carbon-covered alumina supported TiO2 /Polysulfone membranes[J]. Ind Eng Chem Res, 2014, 53(14): 5709-5717.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号