掺杂纤维素/离子液体的聚苯并咪唑质子传导膜及钒电池性能研究
作者:孙佳雯,王丽华,韩旭彤
单位: 1.天津工业大学 材料科学与工程学院,天津 300387; 2.中国科学院 化学研究所,北京100190
关键词: 聚苯并咪唑;氰乙基纤维素;质子传导膜;质子电导率
出版年,卷(期):页码: 2022,42(4):43-50

摘要:
 质子化后的聚苯并咪唑(PBI)膜因同时具备传输质子和阻隔钒离子能力,常被用作全钒液流电池(VRFBs)质子传导膜,但是较低的质子电导率严重影响其实际应用。本文通过使用氰乙基纤维素/离子液体(CEC@ILs)作为改性剂,直接掺杂到PBI基体中构建了一系列PBI/CEC@ILs全钒液流电池质子传导膜。研究了吸水率、面电阻、质子电导率、钒离子渗透率以及相应电池循环性能等性能。结果表明:CEC的掺杂能有效改善PBI的质子电导率,在电流密度120mA/cm2下,PBI/CEC@ILs-3%的电压效率(EV)和能量效率(EE)可达81.8%、79.5%。经过300次循环后EE值仍可保持在78%以上,并且自放电时间600h后电压没有明显下降,均优于PBI膜和Nafion115膜。
 The protonated polybenzimidazole (PBI) membrane has the ability to transport protons and block vanadium ions,.Therefore,it is often used as a proton conducting membrane for all-vanadium flow batteries (VRFBs), but the lower proton conductivity seriously affects its practicality. application. In this paper, a series of PBI/CEC@ILs in vanadium redox flow battery proton-conducting membranes were constructed by using cyanoethyl cellulose/ionic liquid (CEC@ILs) as the modifier and directly mixed into the PBI matrix. The properties of water absorption, surface resistance, proton conductivity, vanadium ion permeability, and corresponding battery cycle performance were studied. The results show that the doping of CEC can effectively improve the proton conductivity of PBI. At the current density of 120mA/cm2, the voltage efficiency (VE) and energy efficiency (EE) of PBI/CEC@ILs-3% can reach 81.8%、79.5%. After 300 cycles, the EE value can still remain above 78%, and the voltage does not drop significantly after the self-discharge time of 600h, which is better than PBI membrane and Nafion115 membrane.
孙佳雯(1996-),女,辽宁凌海市人,硕士,主要从事质子交换膜方向研究

参考文献:
 [1]王志轩.储能在碳中和目标下的战略地位和发展建议[J].新能源科技,2021(6):24-26.
[2]陈海生,刘畅,徐玉杰,等.储能在碳达峰碳中和目标下的战略地位和作用[J].储能科学与技术,2021,10(5):1477-1485.
[3]王汝英, 魏伟, 闫松,等. 面向"碳中和"能源互联网的风光储联动配置算法[J]. 电力电容器与无功补偿,2021,42(4):73-81.
[4]杨卫明,胡岩,殷新建, 等.储能技术及应用发展现状[J].建材世界,2019,40 (5):115-119.
[5]青格乐图,郭伟男,范永生等.全钒液流电池用质子传导膜研究进展[J].化工学报,2013,64(2):427-435.
[6]蔡伟,张鑫,张科杰等.用户侧储能安全技术分析[J].供用电,2021,38(8):8-11.
[7]Min A S,Yeop J H,Jung-K J,et al.Polybenzimidazole/Nafion hybrid membrane with improved chemical stability for vanadium redox flow battery application[J]. RSC Advances, 2018, 8(45):25304-25312.
[8]Hyeongrae C ,Henning K ,Jochen K. Application of novel anion-exchange blend membranes (AEBMs) to vanadium redox flow batteries[J].Membranes, 2018, 8(2):33-36.
[9]Zhang J C, Wang G, Wang F, et al.Sulfonated poly(ether ether ketone)/TiO2 double-deck membrane for vanadium redox flow battery application[J].Journal of Electroanalytical Chemistry,2016,4(10):133-136.
[10]Jiang B,Yu L H,Wu L T,et al. Insights into the impact of the nafion membrane pretreatment process on vanadium flow battery performance.[J].ACS Applied Materials & Interfaces,2016,8(19):215-220.
[11]卫浩. 基于聚苯并咪唑的新型全钒液流电池用质子交换膜的制备与研究[D].沈阳:辽宁大学,2020.
[12]宋西鹏,刘金宇,王丽华,等.聚苯并咪唑/聚乙烯吡咯烷酮复合质子交换膜的制备及钒液流电池性能[J].高等学校化学学报,2019, 40(7):9-11.
[13]Zeng L,Ren Y X, Wei L, et al.Asymmetric porous polybenzimidazole membranes with high conductivity and selectivity for vanadium redox flow batteries[J].Energy Technology, 2020, 8(10):2000592.
[14]Wei H, Liu Y M,Xu W G,et al.Communication-polyethylene/PBI pore-filling composite membrane for high performance vanadium redox flow battery[J].Journal of the Electrochemical Society, 2019, 166(14):A3207-A3209.
[15]Sum E,Rychcik M,Skyllas-Kazacos M.Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16(2):85-95.
[16]杨晓兵.基于磷钨酸锚定的全钒液流电池用质子交换膜的性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[17] Aili D, Allward T, Alfaro S M, et al. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer lectrolyte membrane fuel cells[J]. Electrochimica Acta, 2014,140,182-190.
[18] Ding L M, Song X P, Wang LH, et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal of Membrane Science, 2019,578,126-135
[19] Devrim Y, Devrim H, Eroglu I. Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy,2016,41(23):10044-10052 
[20]Hooshyari K, Javanbakht M, Shabanikia A, et al. Fabrication BaZrO3/PBI based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane  fuel cells[J]. Journal of Power Sources, 2015,276,62-72
[21] Du H Y, Wang C H, Yang C S, et al. A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange fuel cells[J]. Journal of Materials Chemistry A,2014,2(19):7015-7019
[22]Zhang YX,Wang H X,Liu B, et al. An ultra-high ion selectivity hybrid proton exchange membrane incorporated by zwitterion-decorated graphene oxide for vanadium redox flow battery[J].Journal of Materials Chemistry A,2019,7(20):12669-12680
[23]李炎.磺化聚合物/木质素磺酸复合质子交换膜的制备及性能研究[D].吉林:东北电力大学,2021.
[24]赵群.纳米微晶纤维素的制备、改性及其增强复合材料性能的研究[D].上海:东华大学,2014. 
[25]Zhang Y; Zhong Y G; Bian W J, et al. Robust proton exchange membrane for vanadium redox flow batteries reinforced by silica-encapsulated nanocellulose[J].International Journal of Hydrogen Energy, 2020, 45( 16):9803-9810.
[26] 郑建丽,王丽华,韩旭彤. 磺化聚砜/POSS质子传导膜的制备及钒电池性能[J].膜科学与技术,2021,41(3):59-67
[27] Ding L M; Wang Y H;Wang L H;et al.A simple and effective method of enhancing the proton conductivity  of polybenzimidazole proton exchange membranes through protonated polymer during solvation[J].Journal of Power Sources, 2020, 455:227965.
[28]]于淼.氰乙基纤维素在凝胶聚合物电解质中的应用及性能研究[D].北京:北京理工大学,2017.
[29]Di M T, Hu L, Gao L, et al.Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries[J].Chemical Engineering Journal,2020, 399:125833
[30]宋西鹏.PBI/ILs复合膜制备,机理研究及在全钒液流电池中的应用[D].天津:天津工业大学, 2019.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号