正交法优化不同价态硝酸盐的纳滤分离工艺
作者:赵珍珍,肖春艳,冯世超,宋伟杰,万印华,李少华
单位: 1河南理工大学 资源环境学院,河南 焦作 454000;2中国科学院过程工程研究所 生化工程国家重点实验室,北京 100190;3中国科学院绿色过程制造创新研究院,北京 100190;4中国科学院稀土研究院,江西 赣州341000
关键词: 纳滤膜工艺;正交试验;硝酸盐;分离因子
出版年,卷(期):页码: 2022,42(4):51-58

摘要:
 针对稀土矿浸出液中不同价态硝酸盐的分离需求,采用正交试验研究了NF5纳滤膜对NaNO3、Ca(NO3)2、Nd(NO3)3和Ce(NO3)4混合盐的分离效果,并考察了盐溶液浓度、操作压力、进料流速和溶液pH等因素对不同价态硝酸盐分离因子(SF)的影响,确定了分离硝酸盐中不同价态阳离子的最佳条件。结果表明,最佳条件下硝酸盐的分离效果为:SFNa/Ca = 18.23,SFNa/Nd = 35.20,SFNa/Ce = 33.26,SFCa/Nd = 4.55,SFCa/Ce = 4.45,SFNd/Ce = 1.10,说明NF5纳滤膜对一价与高价离子(SFNa/Ca、SFNa/Nd和SFNa/Ce)具有优异的分离效果,对二价与大于二价离子(SFCa/Nd和SFCa/Ce)的分离具有一定效果,而对三价和四价离子(SFNd/Ce)的分离效果不佳。
 For the urgent demands in separating nitrate in different valence states from rare earth leaching solutions, this paper studied the separation performance of NF5 nanofiltration membrane on NaNO3, Ca(NO3)2, Nd(NO3)3 and Ce(NO3)4 mixed salt solution using the orthogonal test and investigated the influence of salt concentration, pressure, flow rate and pH on the separation factors of nitrate in different valences states, and determined the optimal conditions to separate cationic in different valences states of nitrate. The results under optimal conditions of nitrate in different valence states were showed as follows: SFNa/Ca = 18.23, SFNa/Nd = 35.20, SFNa/Ce = 33.26, SFCa/Nd = 4.55, SFCa/Ce = 4.45, SFNd/Ce = 1.10, indicating that NF5 nanofiltration membrane had excellent separation performance in monovalent and high-valence ions ( SFNa/Ca, SFNa/Nd and SFNa/Ce ), and had a certain separation efficiency for divalent and higher than divalent ions ( SFCa/Nd and SFCa/Ce ), but had poor separation selectivity on trivalent and tetravalent ions ( SFNd/Ce ). The research would be important for the separation of salts in different valence states by nanofiltration.
赵珍珍(1994-),女,河南焦作人,硕士生,从事分离膜制备与应用研究

参考文献:
 [1] Krishnan S, Zulkapli N S, Kamyab H, et al. Current technologies for recovery of metals from industrial wastes: An overview[J]. Environmental Technology & Innovation, 2021, 22: 101525.
[2] Talan D, Huang Q. Separation of thorium, uranium, and rare earths from a strip solution generated from coarse coal refuse[J]. Hydrometallurgy, 2020, 197: 105446.
[3] Zhang W, Feng D, Xie X, et al. Solvent extraction and separation of light rare earths from chloride media using HDEHP-P350 system[J]. Journal of Rare Earths, 2021, 40(2): 328-337.
[4] Swain N, Mishra S. A review on the recovery and separation of rare earths and transition metals from secondary resources[J]. Journal of Cleaner Production, 2019, 220: 884-898.
[5] Luo J, Wan Y. Effects of pH and salt on nanofiltration—a critical review[J]. J Membr Sci, 2013, 438: 18-28.
[6] Zhang Y, Wang L, Sun W, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 7-23.
[7] 黄嘉臣, 罗建泉, 郭世伟, 等. 化学清洗对聚酰胺纳滤膜的影响机制研究进展[J]. 膜科学与技术, 2020, 40(1): 188-195.
[8] Yang Z, Fang W, Wang Z, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+separation[J]. Journal of Membrane Science, 2020, 620: 118862.
[9] Murthy Z V P, Choudhary A. Separation of cerium from feed solution by nanofiltration[J]. Desalination, 2011, 279(1-3): 428-432.
[10] Murthy Z V P, Choudhary A. Application of nanofiltration to treat rare earth element (neodymium) containing water[J]. Journal of Rare Earths, 2011, 29(10): 974-978.
[11] 张小亚, 苑宏英, 石雪莉, 等. 氯化钠/硫酸钠体系的纳滤分盐试验分析[J]. 膜科学与技术, 2020, 40(5): 111-117.
[12] Qi B, Luo J, Chen X, et al. Separation of furfural from monosaccharides by nanofiltration[J]. Bioresour Technol, 2011, 102(14): 7111-7118.
[13] Bentouhami E, Bouet G M, Meullemeestre J, et al. Physicochemical study of the hydrolysis of Rare-Earth elements (III) and thorium (IV)[J]. Comptes Rendus Chimie, 2004, 7(5): 537-545.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号