氧化石墨烯表面改性正渗透膜制备及其抗污染性能研究
作者:周倩,赵频,刘浩,胡阳,王新华
单位: 1.江南大学环境与土木工程学院,无锡 214122; 2.江苏省生物质能与减碳技术工程实验室,无锡 214122; 3.江苏省水处理技术与材料协同创新中心,苏州 215009
关键词: 聚酰胺复合正渗透膜;表面改性;氧化石墨烯;有机污染
出版年,卷(期):页码: 2022,42(4):81-88

摘要:
 利用化学偶联的方式将氧化石墨烯(GO)接枝到聚酰胺复合正渗透(TFC-FO)膜表面,成功制备出一种新型GO改性TFC-FO膜。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、接触角测量仪、傅里叶变换红外光谱仪(AIR-FTIR)和固体表面Zeta电位分析仪等表征手段,证明GO成功接枝到膜表面,并通过接枝改性降低了膜面粗糙度,增加了亲水性,并增强了荷负电性。然后,采用去离子水和4 mol/L氯化钠溶液作为进料液和汲取液,进行清水渗透试验,同时选取200 ppm海藻酸钠为特征污染物进行抗污染实验。渗透和污染试验结果表明,与未改性的TFC-FO膜相比,GO接枝处理使得改性TFC-FO膜的选择性和抗有机污染能力增强,且在长期污染实验中显示出明显的优势。膜表面污染层的SEM和激光共聚焦显微镜(CLSM)表征结果进一步验证了GO接枝改性确实提升了TFC-FO膜的抗有机污染性能。本研究为TFC-FO膜通过表面改性提升抗有机污染能力提供了一个新思路。
 A novel graphene oxide (GO) modified thin film composite forward osmosis (TFC-FO) membrane was successfully prepared via grafting GO to the surface of TFC-FO membrane by chemical coupling. Based on the characterizations of scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle mete and
AIR-FTIR and Zeta potential, it was well proven that the successful grafting of GO decreased the membrane surface roughness, enhanced the hydrophilicity, and made the modified TFC membrane more negatively charged. Moreover, permeation experiment was conducted using deionized water and 4 mol/L sodium chloride solution as feed solution and draw solution to test the membrane performance in terms of water flux and reverse salt flux, and fouling experiment was operated using 200 ppm sodium alginate as the feed solution to evaluate the anti-fouling behavior of membrane. Results showed that, comparing with the control TFC-FO membrane, the modified membrane had superior selectivity and presented obvious advantages in long-term fouling experiments. Then, the fouled membrane was further analyzed by SEM and confocal laser scanning microscopy (CLSM). The reduced sodium alginate on the membrane surface intuitively verified that the GO grafting modification improved the anti-organic fouling ability of TFC-FO membrane. This study provides a new idea for surface modified TFC-FO membrane to improve its anti-organic fouling capacity.
周倩(1998-),女,四川乐山人,硕士生,主要从事膜法水处理技术研究

参考文献:
 [1] Cath T, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1-2): 70-87.
[2] Zhao S F, Zou L D, Tang C Y, et al. Recent developments in forward osmosis: Opportunities and challenges[J]. Journal of Membrane Science, 2012, 396: 1-21.
[3] Wang X H, Chang V W C, Tang C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132.
[4] 胡群辉, 邹昊, 姜莹, 等. 正渗透膜分离关键技术及其应用进展[J]. 膜科学与技术, 2014, 34(05): 109-115.
[5] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197.
[6] Guo W, Ngo H, Li J. A mini-review on membrane fouling[J]. Bioresource Technology, 2012, 122: 27-34.
[7] She Q, Wang R, Fane A G, et al. Membrane fouling in osmotically driven membrane processes: A review[J]. Journal of Membrane Science, 2016, 499: 201-233.
[8] Saleem H, Trabzon L, Kilic A, et al. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination[J]. Desalination, 2020, 478: 114178.
[9] Liu Y, Mi B. Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation[J]. Journal of Membrane Science, 2012, 407-408: 136-144.
[10] Nguyen T, Lee C, Field R W, et al. Insight into organic fouling behavior in polyamide thin-film composite forward osmosis membrane: Critical flux and its impact on the economics of water reclamation[J]. Journal of Membrane Science, 2020, 606: 118118.
[11] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents[J]. Journal of Membrane Science, 2010, 348(1-2): 337-345.
[12] 王涛, 王宁, 陆金仁, 等. 正渗透膜污染特征及抗污染正渗透膜研究进展[J]. 膜科学与技术, 2017, 37(1): 125-132.
[13] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents[J]. Journal of Membrane Science, 2010, 348(1-2): 337-345.
[14] Li L, Wang X H, Xie M, et al. In situ extracting organic-bound calcium: A novel approach to mitigating organic fouling in forward osmosis treating wastewater via gradient diffusion thin-films[J]. Water Research, 2019, 156: 102-109.
[15] Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924.
[16] Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Research, 2015, 80: 306-324.
[17] Rana D, Matsuura T. Surface Modifications for Antifouling Membranes[J]. Chemical Reviews, 2010, 110(4): 2448-2471.
[18] Vatanpour V, Sanadgol A. Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement[J]. Desalination, 2020, 491: 114442.
[19] Tiraferri A, Kang Y, Giannelis E P, et al. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms[J]. Environmental Science & Technology, 2012, 46(20): 11135-11144.
[20] Lu X, Romero-Vargas Castrillón S, Shaffer D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environmental Science & Technology, 2013, 47(21): 12219-12228.
[21] Hegab H M, ElMekawy A, Barclay T G, et al. Single-step assembly of multifunctional poly(tannic acid)-graphene oxide coating to reduce biofouling of forward osmosis membranes[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17519-17528.
[22] Akther N, Phuntsho S,Chen Y,et al. Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes[J]. Journal of Membrane Science,2019,584:20-45.
[23] Hegab H M, ElMekawy A, Barclay T G, et al. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity[J]. ACS Applied Materials & Interfaces, 2015, 7(32): 18004-18016.
[24] Choi W, Choi J, Bang J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Applied Materials & Interfaces, 2013, 5: 12510-12519.
[25] 徐梦思, 马广翔, 易夏文, 等. 内嵌碳纳米管层的导电正渗透膜制备及其缓解有机污染的研究[J]. 膜科学与技术, 2021, 41(03): 9-15.
[26] 李玲, 王新华, 李秀芬, 等. EDTA吸附材料控制厌氧正渗透膜生物反应器中正渗透膜的污染[J]. 膜科学与技术, 2019, 39(4): 82-88.
[27] Hu M, Mi B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction[J]. Journal of Membrane Science, 2014, 469: 80-87.
[28] Vatanpour V, Sanadgol A. Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement[J]. Desalination, 2020, 491: 114442.
[29] Shao F F, Su X, Shen X, et al. Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide[J]. Separation and Purification Technology, 2021, 254: 117586.
[30] Huang X, Marsh K L, McVerry B T, et al. Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14334-14338.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号