亲水改性聚偏氟乙烯静电纺丝膜及其自重驱动 油/水分离性能
作者:吕艺舒,孟娇,张旋,陈艳,郎万中
单位: 上海师范大学 教育部资源化学重点实验室,化学与材料科学学院,上海200234
关键词: 聚偏氟乙烯膜;静电纺丝膜;微滤膜;油/水分离
出版年,卷(期):页码: 2022,42(4):105-111

摘要:
 为了提升聚偏氟乙烯(PVDF)膜的油/水分离性能,在静电纺丝PVDF基膜表面先后沉积聚多巴胺(PDA)和水凝胶海藻酸钙(CaAlg)并制备了CaAlg-PDA/PVDF复合膜。利用PDA强黏附性和CaAlg与PDA亲和性,增强水凝胶改性PVDF膜的渗透稳定性。结果表明,在2 mg/mL多巴胺溶液中自聚反应后PVDF膜的孔径变化不大,进一步经水凝胶改性后所制CaAlg-PDA/PVDF复合膜的水浸润性明显提升,且平均孔径、孔隙率都大幅下降。所制备的CaAlg-PDA/PVDF复合膜对石油醚乳化油的截留率最高可达99.9 %,渗透系数在2.0×104 L/(m2·h·MPa)以上;而对正己烷乳化油的截留率最高也可达99.9 %,渗透系数则高于3.2×104 L/(m2·h·MPa)。相较于CaAlg/PVDF膜,CaAlg-PDA/PVDF复合膜具有更好的性能稳定性。
 In order to improve the oil-water separation performance of polyvinylidene fluoride (PVDF) membrane, the CaAlg-PDA/PVDF composite membranes were prepared by depositing polydopamine (PDA) and hydrogel calcium alginate (CaAlg) on the surface of electrospun PVDF base membrane successively. The strong adhesion of PDA and the affinity between CaAlg and PDA were used to enhance the performance stability of CaAlg-PDA/PVDF membranes. The results showed that the pore size of PVDF membrane didn’t change much after self-polymerization in 2 mg·mL-1 dopamine solution. The water wettability of CaAlg-PDA/PVDF composite membrane was significantly improved after further hydrogel modification, and the average pore size and porosity of PVDF composite membrane were significantly decreased. The CaAlg-PDA/PVDF composite membranes have the highest rejection of 99.9% for petroleum ether emulsion oil, and the water permeance is higher than 2.0×104 L/(m2·h·MPa). For emulsified n-hexane solution, the highest rejection also can achieve 99.9%, and the water permeance is higher than 3.2×104 L/(m2·h·MPa). Compared with the CaAlg/PVDF membranes, the CaAlg-PDA/PVDF composite membranes show better performance stability.  
吕艺舒(2001-),女,山西运城人,本科生,主要从事膜分离技术研究

参考文献:
 [1].Tang Y, Lin Y, Ma W, et al. A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application[J]. J Membr Sci, 2021, 639: 119759.
[2].Kang G, Cao Y. Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review[J]. J Membr Sci, 2014, 463: 145-165.
[3].Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci, 2011, 375(1/2): 1-27.
[4].张庆磊, 吕晓龙, 杨士春, 等. 聚偏氟乙烯分离膜的亲水改性[J]. 膜科学与技术, 2012, 32(4): 17-20.
[5].Kim J F, Kim J H, Lee Y M, et al. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review[J]. AIChE J, 2016, 62(2): 461-490.
[6].Zhang N, Yang X, Wang Y, et al. A review on oil/water emulsion separation membrane material[J]. J Environ Chem Eng, 2022, 10: 107257.
[7].Ding Y, Wu J, Wang J, et al. Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation[J]. Appl Surf Sci, 2019, 485: 179-187.
[8].Mousa H M, Fahmy H S, Abouzeid R, et al. Polyvinylidene fluoride-cellulose nanocrystals hybrid nanofiber membrane for energy harvesting and oil-water separation applications[J]. Mater Lett, 2022, 306: 130965.
[9].Zhang J, Zhang F, Song J, et al. Electrospun flexible nanofibrous membranes for oil/water separation[J]. J Mater Chem A, 2019, 7(35): 20075-20102.
[10].钱明,孟娇,郎万中. 海藻酸钙改性聚偏氟乙烯(CaAlg/PVDF)静电纺丝膜用于油水乳液的自重驱动分离[J]. 膜科学与技术,2022, 42(2): 89-93.
[11].Meng J, Xie Y, Gu Y H, et al. PVDF-CaAlg nanofiltration membranes with dual thin-film-composite (TFC) structure and high permeation flux for dye removal[J]. Sep Purif Technol, 2021, 255: 117739.
[12].Zhao K, Zhang X, Wei J, et al. Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance[J]. J Membr Sci, 2015, 492: 536-546.
[13].Zuo J H, Cheng P, Chen X F, et al. Ultrahigh flux of polydopamine-coated PVDF membranes quenched in air via thermally induced phase separation for oil/water emulsion separation[J]. Sep Purif Technol, 2018, 192: 348-359. 
[14].Lynge M E, van der Westen R, Postma A, et al. Polydopamine—a nature-inspired polymer coating for biomedical science[J]. Nanoscale, 2011, 3(12): 4916-4928.
[15].Yang H C, Luo J, Lv Y, et al. Surface engineering of polymer membranes via mussel-inspired chemistry[J]. J Membr Sci, 2015, 483: 42-59.
[16].张超, 聚多巴胺的沉积及其功能化表面的构建 [D]. 杭州:浙江大学, 2018.
[17].Chen J, Guo J, Zhao M, et al. Hydrogen bonding in chitosan/Antarctic krill protein composite system: Study on construction and enhancement mechanism[J]. Int J Biol Macromol, 2020, 142: 513-520
[18].Huang Y, Zhan H, Li D, et al. Tunicate cellulose nanocrystals modified commercial filter paper for efficient oil/water separation[J]. J Membr Sci, 2019, 591: 117362.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号