热致相分离法制备微孔膜的稀释剂研究进展
作者:王玉杰,毛恒,赵之平
单位: 1. 中石化(北京)化工研究院有限公司,北京 100013;2. 北京理工大学化学与化工学院,北京 102488
关键词: 热致相分离;微孔膜;稀释剂;膜结构;筛选依据
出版年,卷(期):页码: 2022,42(4):163-173

摘要:
 热致相分离(TIPS)法制备的微孔膜因具有孔隙率高、渗透通量大、孔径分布窄、孔径可调、机械强度高等优势而备受关注。在TIPS法制备微孔膜过程中,稀释剂的选择对相分离过程尤为重要,直接决定了微孔膜的结构与形态。本文综述了稀释剂在TIPS法制备微孔膜中的研究进展。首先介绍了稀释剂的筛选依据;其次重点阐述了稀释剂种类对所制微孔膜的形貌、结构与性能的影响;最后指出,通过结合机器学习、深度学习等技术构建精准稀释剂选择的理论模型,开发绿色、高效的稀释剂是TIPS法制备微孔膜研究的重点方向之一。
 Microporous membranes prepared by thermally induced phase separation (TIPS) have attracted much attention due to their high porosity, large permeation flux, narrow pore size distribution, adjustable pore size, and high mechanical strength. In the preparation of microporous membranes by TIPS method, the selection of diluent is particularly important for the phase separation process, which directly determines the structure and morphology of the microporous membranes. In this study, the research progress of diluents in the preparation of microporous membranes by thermally induced phase separation is reviewed. Firstly, the selection principle of the diluent is introduced. And then, the effects of different diluents on the morphology, structure and performance of the prepared microporous membrane are elaborately elucidated. Finally, it is pointed out that combining the machine learning, deep learning, and other technologies to build a precise theoretical model for diluent selection, the development of green and efficient diluents is one of the key research directions on the microporous membrane preparation by TIPS method.
王玉杰(1980-),女,河北保定人,博士,高级工程师,主要从事膜材料制备与应用研究

参考文献:
 [1] Castro A J. Methods for making microporous products: US, 4247498[P].1981-10-14.
[2] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci, 2011, 375: 1-27.
[3] Matsuyama H, Okafuji H, Maki T, et al. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation[J]. J Membr Sci, 2003, 223: 119-126.
[4] Tang Y H, Li M F, Lin Y K, et al. A novel green diluent for the preparation of poly(4-methyl-1-pentene) membranes via a thermally-induced phase separation method[J]. Membranes, 2021, 11: 622.
[5] Figoli A, Marino T, Simone S, et al. Towards non-toxic solvents for membrane preparation: a review[J]. Green Chem, 2014, 16: 4034-4059.
[6] Lloyd D R, Kim S S, Kinzer K E. Microporous membrane formation via thermally-induced phase separation. II. Liquid—liquid phase separation[J]. J Membr Sci, 1991, 64: 1-11.
[7] vandeWitte P, Dijkstra P J, vandenBerg J W A, et al. Phase separation processes in polymer solutions in relation to membrane formation[J]. J Membr Sci, 1996, 117: 1-31.
[8] Lee J W, Im K S, Nam S Y. Investigation of formation for poly(vinylidene fluoride) membrane using thermally induced phase separation[J]. J Nanosci Nanotechno, 2020, 20: 7140-7144.
[9] Wang X, Xiao C, Liu H, et al. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes[J]. J Appl Polym Sci, 2018, 135: 46711.
[10] Zou D, Nunes S P, Vankelecom I F J, et al. Recent advances in polymer membranes employing non-toxic solvents and materials[J]. Green Chem, 2021, 23: 9815-9843.
[11] Lloyd D R, Kinzer K E, Tseng H S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation[J]. J Membr Sci, 1990, 52: 239-261.
[12] McGuire K S, Laxminarayan A, Lloyd D R. Kinetics of droplet growth in liquid-liquid phase separation of polymer-diluent systems: experimental results[J]. Polymer, 1995, 36: 4951-4960.
[13] Kim S S, Lloyd D R. Thermodynamics of polymer/diluent systems for thermally induced phase separation: 3. Liquid-liquid phase separation systems[J]. Polymer, 1992, 33: 1047-1057.
[14] Yang Z, Li P, Chang H, et al. Effect of diluent on the morphology and performance of IPP hollow fiber microporous membrane via thermally induced phase separation[J]. Chinese J Chem Eng, 2006, 14: 394-397.
[15] Yang Z, Li P, Xie L, et al. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP[J]. Desalination, 2006, 192: 168-181.
[16] McGuire K S, Laxminarayan A, Lloyd D R. A simple method of extrapolating the coexistence curve and predicting the melting point depression curve from cloud point data for polymer-diluent systems[J]. Polymer, 1994, 35: 4404-4407.
[17] Cha B J, Char K, Kim J J, et al. The effects of diluent molecular weight on the structure of thermally-induced phase separation membrane[J]. J Membr Sci, 1995, 108: 219-229.
[18] 夏德万, 张强, 赵芸, 等. 聚合物分子量对热致相分离法制备聚乙烯微孔滤膜的影响[J]. 功能高分子学报, 2007, 19/20(3): 267-271.
[19] 安亚欣, 李凭力, 吴浩赟, 等. 二元稀释剂对热致相分离法制备PVDF微孔膜的结构影响[J]. 化工新型材料, 2014, 42: 189-195.
[20] 陈创, 于俊荣, 王新威, 等. 超高相对分子质量聚乙烯中空纤维膜的制备与性能研究[J]. 化工新型材料, 2015, 43(1): 43-45, 54.
[21] Pang B, Li Q, Tang Y H, et al. Fabrication of cellulose acetate ultrafiltration membrane with diphenyl ketone via thermally induced phase separation[J]. J Appl Polym Sci, 2015, 132(41): 42669.
[22] Wang J, He Q, Zhao Y, et al. Preparation and properties of iPP hollow fiber membranes for air gap membrane distillation[J]. Desalin Water Treat, 2016, 57: 23546-23555.
[23] Cui Z, Hassankiadeh N T, Lee S Y, et al. Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation[J]. J Membr Sci, 2013, 444: 223-236.
[24] Tang N, Feng C, Han H, et al. High permeation flux polypropylene/ethylene vinyl acetate co-blending membranes via thermally induced phase separation for vacuum membrane distillation desalination[J]. Desalination, 2016, 394: 44-55.
[25] Xu K, Cai Y, Hassankiadeh N T, et al. ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation[J]. Desalination, 2019, 456: 13-22.
[26] Wang X, Li X, Yue J, et al. Fabrication of poly(vinylidene fluoride) membrane via thermally induced phase separation using ionic liquid as green diluent[J]. Chinese J Chem Eng, 2020, 28: 1415-1423.
[27] Yang J, Li D W, Lin Y K, et al. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation[J]. J Appl Polym Sci, 2008, 110: 341-347.
[28] Yang J, Wang X, Tian F, et al. Diluent selection of PVDF membrane prepared via thermally induced phase separation[J]. Chem J Chin Univ Chin, 2008, 29: 1895-1900.
[29] Yang J, Wang X, Tian Y, et al. Morphologies and crystalline forms of polyvinylidene fluoride membranes prepared in different diluents by thermally induced phase separation[J]. J Polym Sci B Polym Phys, 2010, 48: 2468-2475.
[30] Lin Y, Tang Y, Ma H, et al. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation[J]. J Appl Polym Sci, 2009, 114: 1523-1528.
[31] Tang Y H, He Y D, Wang X L. Three-dimensional analysis of membrane formation via thermally induced phase separation by dissipative particle dynamics simulation[J]. J Membr Sci, 2013, 437: 40-48.
[32] Lim G B A, Kim S S, Ye Q H, et al. Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure[J]. J Membr Sci, 1991, 64: 31-40.
[33] Ramaswamy S, Greenberg A R, Krantz W B. Fabrication of poly (ECTFE) membranes via thermally induced phase separation[J]. J Membr Sci, 2002, 210: 175-180.
[34] Li X, Lu X. Morphology of polyvinylidene fluoride and its blend in thermally induced phase separation process[J]. J Appl Polym Sci, 2006, 101: 2944-2952.
[35] Zhang J, Fu J H, Wang X L, et al. Effect of diluents on hydrophilic ethylene-acrylic acid co-polymer membrane structure via thermally induced phase separation[J]. Desalination, 2006, 192: 151-159.
[36] Zhang C, Min Y, Bai Y, et al. Fabrication and characterization of chlorinated polyvinyl chloride microporous membranes via thermally induced phase separation process[J]. J Appl Polym Sci, 2017, 134: 44346.
[37] 闵瑛, 张春芳, 白云翔, 等. 热致相分离法制备聚氯乙烯微孔膜及其结构控制与性能研究[J]. 膜科学与技术, 2016, 36: 36-41.
[38] Sheng L, Du Y, Zhang H, et al. Effects of cooling process on the solid-liquid phase separation process in ultra-high-molecular-weight polyethylene/liquid paraffin blends[J]. Polym Bull, 2020, 77: 165-181.
[39] Zhou Q, Wang Z, Shen H, et al. Morphology and performance of PVDF TIPS microfiltration hollow fiber membranes prepared from PVDF/DBP/DOP systems for industrial application[J]. J Chem Technol Biot, 2016, 91: 1697-1708.
[40] Song Z, Yang W, Zhang J, et al. Fabrication of hollow fiber microfiltration membrane from PVDF/DBP/DBS system via thermally induced phase separation process[J]. J Polym Eng, 2015, 35: 709-717.
[41] 王薇, 史梦芝, 张宇峰. 复合稀释剂体系下聚偏氟乙烯平板膜的制备与表征[J]. 天津工业大学学报, 2018, 37: 15-22.
[42] Ji G L, Xu Y Y, Zhu B K, et al. PVDF-HFP membrane prepared via TIPS process as the matrix of gel electrolyte for lithium ion battery[J]. J Macromol Sci B, 2010, 50: 275-290.
[43] Tang Y H, He Y D, Wang X L. Effect of adding a second diluent on the membrane formation of polymer/diluent system via thermally induced phase separation: dissipative particle dynamics simulation and its experimental verification[J]. J Membr Sci, 2012, 409: 164-172.
[44] Zhang H, Lu X, Liu Z, et al. The unidirectional regulatory role of coagulation bath temperature on cross-section radius of the PVDF hollow-fiber membrane[J]. J Membr Sci, 2018, 550: 9-17.
[45] Zhang Z, Guo C, Liu G, et al. Effect of TEP content in cooling bath on porous structure, crystalline and mechanical properties of PVDF hollow fiber membranes[J]. Polym Eng Sci, 2014, 54: 2207-2214.
[46] Zhang Z, Guo C, Li X, et al. Effects of PVDF crystallization on polymer gelation behavior and membrane structure from PVDF/TEP system via modified TIPS process[J]. Polym-Plast Technol, 2013, 52: 564-570.
[47] Liang H Q, Wu Q Y, Wan L S, et al. Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent[J]. J Membr Sci, 2013, 446: 482-491.
[48] Wang Y J, Zhao Z P, Xi Z Y, et al. Microporous polypropylene membrane prepared via TIPS using environment-friendly binary diluents and its VMD performance[J]. J Membr Sci, 2018, 548: 332-344.
[49] Yan S Y, Wang Y J, Mao H, et al. Fabrication of PP hollow fiber membrane via TIPS using environmentally friendly diluents and its CO2 degassing performance[J]. RSC Adv, 2019, 9: 19164-19170.
[50] Hassankiadeh N T, Cui Z, Kim J H, et al. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with Polar Clean as water-soluble green diluent and additives[J]. J Membr Sci, 2015, 479: 204-212.
[51] Milescu R A, McElroy C R, Farmer T J, et al. Fabrication of PES/PVP water filtration membranes using cyrene®, a safer bio-based polar aprotic solvent[J]. Adv Polym Tech, 2019, 2019: 9692859.
[52] Marino T, Galiano F, Molino A, et al. New frontiers in sustainable membrane preparation: cyreneTM as green bioderived solvent[J]. J Membr Sci, 2019, 580: 224-234.
[53] Zhang Z C, Guo C G, La J L. Tributyl citrate as diluent for preparation of pvdf porous membrane via thermally induced phase separation[J]. Polym Polym Compos, 2015, 23: 175-180.
[54] Alqaheem Y, Alomair A, Alhendi A, et al. Preparation of polyetherimide membrane from non-toxic solvents for the separation of hydrogen from methane[J]. Chem Cent J, 2018, 12: 80.
[55] Ajari H, Chaouachi B, Galiano F, et al. A novel approach for dissolving crystalline LDPE using non-toxic solvents for membranes preparation[J]. Int J Environ Sci Technol, 2019, 16: 5375-5386.
[56] Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser[J]. React Funct Polym, 2014, 79: 1–7.
[57] Cui Z, Cheng Y, Xu K, et al. Wide liquid-liquid phase separation region enhancing tensile strength of poly(vinylidene fluoride) membranes via TIPS method with a new diluent[J]. Polymers, 2018, 141: 46-53.
[58] Wu L, Sun J. An improved process for polyvinylidene fluoride membrane preparation by using a water soluble diluent via thermally induced phase separation technique[J]. Mater Des, 2015, 86: 204-214.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号