哌啶交联型聚亚芳基阴离子交换膜的制备
作者:苟维维, 张秋根,朱爱梅,刘庆林
单位: 厦门大学 化学化工学院,福建省厦门市 361000
关键词: 全碳主链;哌啶交联型;阴离子交换膜;燃料电池
出版年,卷(期):页码: 2022,42(6):22-30

摘要:
 通过聚羟烷基化反应和Menshutkin反应合成了一系列哌啶/传统季铵交联的无醚含氟聚联苯哌啶阴离子膜。在交联和氟化共同作用下,QBPBP/TFAP-X及QAPBP/TFAP-30%膜的溶胀率(4.3%和8.3%, 80 °C)均较低。微相分离最明显的QBPBP/TFAP-45%(1.52 meq g−1)在80 °C下电导率为124.0 mS cm−1。哌啶交联的QBPBP/TFAP-X系列膜耐碱性更出色,其中QBPBP/TFAP-45%在80 °C的2 M NaOH溶液中处理1000 h后,电导保留率为94.07%,表明哌啶阳离子的耐碱性优于季铵盐。在521.3 mA cm−2的电流密度下,QBPBP/TFAP-45%膜组装的单电池最大功率密度为266.8 mW cm−2。
 A series of piperidine or conventional quaternary ammonium cationic crosslinked ether free fluorinated poly(biphenyl piperidinium) AEMs were prepared by polyhydroxyalkylation and Menshutkin reaction. Under the combined effect of crosslinking and fluorination, the QBPBP/TFAP-X and QAPBP/TFAP-30% AEM exhibited low swelling ratios (4.3%-8.3%, 80 °C). QBPBP/TFAP-45% (1.52 meq g−1) with the most obvious microphase separation achieved the highest conductivity of 124.0 mS cm−1 at 80 °C. In an alkaline resistance test, series of piperidine crosslinked QBPBP/TFAP-X membranes showed better alkaline stability. Treated in a 2 M NaOH solution at 80 °C for 1000 h, QBPBP/TFAP-45% showed conductivity retention of 94.07%, indicating that piperidine cation has better alkaline tolerance than traditional quaternary ammonium. At a current density of 521.3 mA cm−2, the single cell assembled by the QBPBP/TFAP-45% membrane achieved a maximum power density of 266.8 mW cm−2.
苟维维(1996-),女,四川省巴中市人,在读硕士研究生,主要从事功能膜材料的制备

参考文献:
 [1] Li D, Park E J, Zhu W, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers [J]. Nat. Energy, 2020, 5(5): 378-385.
[2] Pan J, Zhu H, Cao H, et al. Flexible cationic side chains for enhancing the hydroxide ion conductivity of olefinic-type copolymer-based anion exchange membranes: An experimental and theoretical study [J]. J. Membr. Sci., 2021, 620: 118794.
[3] Wang Y J, Qiao J, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications [J]. Chem. Soc. Rev., 2013, 42(13): 5768-5787.
[4] Kimura T, Matsumoto A, Inukai J, et al. Highly anion conductive polymers: how do hexafluoroisopropylidene groups affect membrane properties and alkaline fuel cell performance? [J]. ACS Appl. Energy Mater, 2019, 3(1): 469-477.
[5] Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review [J]. J. Membr. Sci., 2011, 377(1-2): 1-35.
[6] Zhang F, Li T, Chen W, et al. Highly stable electron-withdrawing CO link-free backbone with branched cationic side chain as anion exchange membrane [J]. J. Membr. Sci., 2021, 624: 119052.
[7] Zhu L, Yu X, Peng X, et al. Poly(olefin)-based anion exchange membranes prepared using Ziegler-Natta polymerization [J]. Macromolecules, 2019, 52(11): 4030-4041.
[8] Pham T H, Allushi A, Olsson J S, et al. Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations [J]. Polym. Chem., 2020, 11(43): 6953-6963.
[9] Hu X, Huang Y, Liu L, et al. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability [J]. J. Membr. Sci., 2021, 621: 118964.
[10] Olsson J S, Pham T H, Jannasch P. Poly (arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity [J]. Adv. Funct. Mater., 2018, 28(2): 1702758.
[11] Hao J, Gao X, Jiang Y, et al. Crosslinked high-performance anion exchange membranes based on poly (styrene-b-(ethylene-co-butylene)-b-styrene)[J]. J. Membr. Sci., 2018, 551: 66-75.
[12] Hu C, Zhang Q, Lin C, et al. Multication crosslinked anion exchange membranes from microporous Tröger's base copolymers[J]. J. Mater. Chem. A, 2018, 6(27): 13302-13311.
[13] Gong S, Li L, Ma L, et al. Blend anion exchange membranes containing polymer of intrinsic microporosity for fuel cell application[J]. J. Membr. Sci., 2020, 595: 117541.
[14] Wang X, Lin C, Gao Y, et al. Anion exchange membranes with twisted poly(terphenylene) backbone: Effect of the N-cyclic cations[J]. J. Membr. Sci., 2021, 635: 119525.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号