高性能聚磺酰胺耐酸纳滤复合膜的制备
作者:薛玉杰,武碧鑫,姚冬雪,郜慧慧,孟建强
单位: 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学, 天津 300387
关键词: 薄层复合膜;聚磺酰胺;纳滤膜;盐截留率;耐酸性;中间层
出版年,卷(期):页码: 2022,42(6):77-86

摘要:
 聚磺酰胺(PSA)是一种常见的耐酸膜材料,通过传统界面聚合法制备的PSA薄层复合膜的通量低,限制了其应用。本文以聚砜(PSF)商品膜为基膜,以单宁酸/铁(TA/Fe)为中间层,1,6-己二胺(HDA)为水相单体,1,3,6-萘三磺酰氯(NTSC)为有机相单体,通过界面聚合法制备了PSA复合膜。通过X射线光电子能谱仪、扫描电镜、原子力显微镜对膜结构和形貌进行表征。研究结果表明,引入中间层后可以在更低的单体浓度下制备连续无缺陷的PSA层,降低了PSA层的厚度和表面粗糙度,制得的PSF-TA/Fe-PSA膜在1 MPa和25℃下,对1000 ppm的Na2SO4溶液的通量为18±1.2 L/m2 h,截留率为99.1±0.1%,其性能明显高于无中间层的PSF-PSA膜(通量为5.4±0.3 L/m2 h;Na2SO4截留率为93.3±1.6%)。TA/Fe中间层抑制了胺类单体的扩散,进而抑制了PSA表面凸起等微结构的生长,使PSA层变得更薄更光滑。酸浸泡实验表明,PSF-TA/Fe-PSA膜在20 w/v%硫酸溶液中浸泡24小时后仍可以保持良好的纳滤性能。
  Polysulfonamide (PSA) is a classic acid-stable membrane materials. The flux of PSA membranes prepared by traditional interfacial polymerization is low, which often hinders its application. PSA composite membranes were prepared by interfacial polymerization with polysulfone (PSF) commercial membranes as substrate membranes, tannic acid/iron (TA/Fe) as interlayer, 1,6-hexanediamine (HDA) as aqueous phase monomer and 1,3,6-naphthalene trisulfonyl chloride (NTSC) as organic phase monomer. The structure and morphology of membranes were characterized by XPS, SEM and AFM. The results show that the continuous defect-free PSA layer could be prepared at lower monomer concentration by introducing the interlayer, which reduced the thickness and surface roughness of PSA layer. The water flux of PSF-TA/Fe-PSA membrane was 18±1.2 L/m2 h and the rejection was 99.1±0.1 % under 1 MPa and 25°C for 1000 ppm Na2SO4 solution, its performance is significantly higher than PSA membranes without interlayer (the flux was 5.4±0.3 L/m2 h; Na2SO4 rejection was 93.3±1.6%). The TA/Fe interlayer restricts the amine monomer diffusion and the growth of microstructures of PSA surface bumps, rendering the PSA layer thinner and smoother. The acid immersion experiment showed that PSF-TA/Fe-PSA membrane could still maintain excellent nanofiltration performance after 24 hours immersion in 20 w/v% H2SO4.
薛玉杰(1996-),女,山东济宁,硕士研究生,研究方向为纳滤膜制备及工艺研究

参考文献:
[1]NLEYA Y, SIMATE G S, NDLOVU S. Sustainability assessment of the recovery and utilisation of acid from acid mine drainage [J]. Journal of Cleaner Production, 2016, 113: 17-27.
[2] ROGENER F, SARTOR M, BAN A, et al. Metal recovery from spent stainless steel pickling solutions [J]. Resources Conservation and Recycling, 2012, 60: 72-77.
[3] HAYRYNEN K, PONGRACZ E, VAISANEN V, et al. Concentration of ammonium and nitrate from mine water by reverse osmosis and nanofiltration [J]. Desalination, 2009, 240(1-3): 280-289.
[4] AFONSO M D. Assessment of NF and RO for the potential concentration of acetic acid and furfural from the condensate of eucalyptus spent sulphite liquor [J]. Separation and Purification Technology, 2012, 99: 86-90.
[5] TRUSHINSKI B J, DICKSON J M, SMYTH T, et al. Polysulfonamide thin-film composite reverse osmosis membranes [J]. Journal of Membrane Science, 1998, 143(1-2): 181-188.
[6] ZHAO F Y, JI Y L, WENG X D, et al. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes [J]. Acs Applied Materials & Interfaces, 2016, 8(10): 6693-6700
[7] ZHOU Z X, YING Y L, PENG X S. High efficient thin-film composite membrane: Ultrathin hydrophilic polyamide film on macroporous superhydrophobic polytetrafluoroethylene substrate [J]. Applied Materials Today, 2017, 8: 54-59.
[8] LEE T H, OH J Y, HONG S P, et al. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition [J]. Journal of Membrane Science, 2018, 570-571.
[9] WANG Z, WANG Z, LIN S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination [J]. Nature Communications, 2018, 9(1): 2004.
[10] GAO S, ZHU Y, GONG Y, et al. Ultrathin Polyamide Nanofiltration Membrane Fabricated on Brush-Painted Single-Walled Carbon Nanotube Network Support for Ion Sieving [J]. Acs Nano, 2019.
[11] KARAN S, JIANG Z W, LIVINGSTON A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation [J]. Science, 2015, 348(6241): 1347-1351.
[12] WU M B, LV Y, YANG H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances [J]. Journal of Membrane Science, 2016, 515: 238-244.
[13] ZHU Y, DOU P J, HE H L, et al. Improvement of permeability and rejection of an acid resistant polysulfonamide thin-film composite nanofiltration membrane by a sulfonated poly(ether ether ketone) interlayer [J]. Separation and Purification Technology, 2020, 239.
[14] YANG, ZHE, ZHOU, et al. Tannic Acid/Fe3+ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance [J]. Environmental Science & Technology Es & T, 2018.
[15] GAO H H, XUE Y J, ZHANG Y F, et al. Engineering of Ag-nanoparticle-encapsulated intermediate layer by tannic acid-inspired chemistry towards thin film nanocomposite membranes of superior antibiofouling property [J]. Journal of Membrane Science, 2022, 641.
[16] TANG L J, ZHANG S F, CUI Z H, et al. Synthesis of chlorosulfonyl-containing pyrazolone azo compounds with thionyl chloride-DMF system [J]. Chinese Journal of Chemical Engineering, 2004, 12(5): 719-722.
[17] MIN G S, KWON S J, PARK H, et al. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes [J]. Journal of Membrane Science, 2019, 595(572): 117590.
[18] 陈欢. 含氟聚酰胺磺酰胺类聚合物的合成与表征 [D]; 上海:上海交通大学, 2010.
[19] HE M, YUAN T, DONG W J, et al. High-performance acid-stable polysulfonamide thin-film composite membrane prepared via spinning-assist multilayer interfacial polymerization [J]. Journal of Materials Science, 2019, 54(1): 886-900.
[20] HOSEINPOUR H, PEYRAVI M, NOZAD A, et al. Static and dynamic assessments of polysulfonamide and poly(amide-sulfonamide) acid-stable membranes [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 453-466.
[21] LIU M H, YAO G H, CHENG Q B, et al. Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP) [J]. Journal of Membrane Science, 2012, 415: 122-131.
[22] DALWANI M, BENES N E, BARGEMAN G, et al. Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes [J]. Journal of Membrane Science, 2011, 372(1-2): 228-238.
[23] ZHANG Y, GUO M, PAN G, et al. Preparation and properties of novel pH-stable TFC membrane based on organic–inorganic hybrid composite materials for nanofiltration [J]. Journal of Membrane Science, 2015, 476: 500-507.
[24] AHARONI S M. The solubility parameters of aromatic polyamides [J]. Journal of Applied Polymer Science, 2010, 45.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号