MXene/C电催化膜制备及对水中盐酸四环素降解性能研究
作者:王虹,邵亚楠,于迪,尹振
单位: 天津工业大学 分离膜与膜过程国家重点实验室,分离膜科学与技术国际联合研究中心,材料科学与工程学院,天津 300387;天津科技大学 化学工程与材料科学学院,天津市卤水化学工程与资源生态利用重点实验室,天津 300457
关键词: MXene;电泳沉积;MXene /C膜;盐酸四环素废水;电催化
出版年,卷(期):页码: 2022,42(6):151-158

摘要:
 本文通过电泳沉积法,将二维MXene纳米片负载到活性炭基微孔炭基膜上,制备负载MXene的炭膜(MXene/C),然后采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对原始炭基膜和MXene/C膜进行表面微观形貌分析,通过X射线衍射仪(XRD)和X射线衍射光电子能谱仪(XPS)进行化学晶型分析和元素价态分析,使用全自动接触角测量仪以及电化学工作站对原始炭基膜和MXene/C膜表面的亲水性和电化学性能进行分析,将炭膜和MXene/C膜为阳极分别构建电催化膜反应器(ECMR)用于电催化氧化降解盐酸四环素(TCH)废水,并对其降解效果进行比较。结果表明:MXene纳米片负载到炭膜表面,成功制备出MXene/C膜,与原始炭膜相比MXene /C膜的亲水性、电化学活性均有显著提升。在温度为20 ℃,停留时间为8 min,TCH废水浓度为50 mg/L,pH为7.0,电流密度为0.6 mA/cm2,电解质Na2SO4浓度为15 g/L的反应条件下,原始炭膜和MXene /C膜对TCH的去除率分别为86.4%和97.76%,TOC去除率分别为40.6%和88.57%。同时经过10次循环使用后,MXene /C膜表现出优秀的稳定性。
 Two-dimensional MXene nanosheets were loaded on activated carbon-based microporous carbon membrane by electrophoretic deposition method to prepare MXene/C membranes. Surface micromorphology analysis of carbon membrane and MXene/C membrane by field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD) was used for chemical crystal analysis, and X-ray diffraction photoelectron spectroscopy (XPS) was used for elemental valence analysis. The hydrophilicity of the membrane surface was analyzed using an automatic contact Angle measuring instrument, and the electrochemical performance was analyzed using an electrochemical workstation. Electrocatalytic membrane reactors (ECMR) were constructed with carbon membrane and MXene/C membrane as anodes for electrocatalytic oxidation degradation of tetracycline hydrochloride wastewater, and their degradation effects were compared. The results showed that the MXene nanosheets were successfully loaded on the surface of the carbon membrane, and the MXene/C membrane was successfully prepared. Compared with the original carbon membrane, the MXene/C membrane had better hydrophilicity, higher electrochemical activity, and higher removal efficiency of tetracycline hydrochloride. When the temperature was 20 ℃, residence time was 8 min, tetracycline hydrochloride wastewater concentration was 50 mg/L, pH was 7.0, current density of 0.6 mA/cm2 and an electrolyte Na2SO4 concentration of 15 g/L, the removal rates of tetracycline hydrochloride by carbon membrane and MXene/C membrane were 86.4% and 97.76%, respectively, and the TOC removal rates were 40.6 % and 88.57%. Meanwhile, after 10 cycles, the MXene/C membrane showed excellent stability.
王虹(1978—),女,辽宁鞍山人,博士,副教授,主要研究方向为电催化在水处理中的应用

参考文献:
 [1] Fiaz A, Zhu D C, Sun J Z. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives[J]. Environ Sci Eur, 2021, 33(1): 64.
[2] Klein E Y, Van Boeckel T P, Martinez E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. P Natl Acad Sci USA, 2018, 115(15): 3463-3470.
[3] Wang H B, Hu C, Liu L Z, et al. Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems[J]. J Hazard Mater, 2017, 339: 174-181.
[4] Li J N, Cheng W X, Xu L K, et al. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents’ influence to downstream water environment[J]. Environ Sci Pollut R, 2016, 23(7): 6826-6835.
[5] Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water[J]. Sci Total Environ, 2009, 407(8): 2711-2723.
[6] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics in the environment[J]. Chemosphere, 2006, 65(5): 725-759.
[7] Jones O A, Lester J N, Voulvoulis N. Pharmaceuticals: a threat to drinking water?[J]. Trends Biotechnol, 2005, 23 (4): 163-167.
[8] Long L L , Bai C W, Zhang S R, et al. Staged and efficient removal of tetracycline and Cu2+ combined pollution: A designed double-chamber electrochemistry system using 3D rGO[J]. J Clean Prod, 2021, 305: 127101.
[9] Yang S M, Feng Y, Gao D, et al. Electrocatalysis degradation of tetracycline in a three-dimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings particle electrode (FPE): Physicochemical properties, influencing factors and the degradation mechanism [J]. J Hazard Mater, 2021, 407: 124361.
[10] Shi Z, Xu P F, Shen X F, et al. TiO2/MoS2 heterojunctions-decorated carbon fibers with broad-spectrum response as weaveable photocatalyst/photoelectrode[J]. Mater Res Bull, 2019, 112: 354-362.
[11] Zhang S W, Gao H H, Xu X T, et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes[J]. Chem Eng J, 2020, 381: 122670.
[12] Misal S N, Lin M H, Mehraeen S, et al. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes[J]. J Hazard Mater, 2019, 383: 121420-121428.
[13] Yang K, Liu Y Y, Liu J W, et al. Preparation optimization of multilayer-structured SnO2-Sb-Ce/Ti electrode for efficient electrocatalytic oxidation of tetracycline in water[J]. Chinese J Chem Eng, 2018, 26(12): 2622-2627.
[14] Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving Ti3C2Tx MXene membranes[J]. J Phys Chem Lett, 2015, 6(20): 4026-4031.
[15] Iqbal M A, Ali S I, Amin F, et al. La- and Mn-codoped bismuth ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of congo red dye[J]. ACS Omega, 2019, 4(5): 8661-8668.
[16] Liu T, Liu X Y, Graham N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. J Membrane Sci, 2020, 593: 7.
[17] Ying Y L, Liu Y, Wang X Y et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chrornium(VI) from water[J]. ACS Appl Mater Inter, 2015, 7(3): 1795-1803.
[18] Shahzad A, Rasool K, Miran W, et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water[J]. ACS Sustain Chem Eng, 2017, 5(12): 11481-11488. 
[19] Srimuk P, Kaasik F, Kruner B, et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. J Mater Chem A, 2016, 4(47): 18265-18271.
[20] 熊鸽, 王虹, 惠洪森, 等. 活性炭基微孔炭膜制备及电化学性能[J]. 膜科学与技术, 2019, 39(05): 37-44.
[21] Deng J J, Lu Z, Ding L, et al. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving[J]. Chem Eng J, 2021, 408: 127806.
[22] 王虹, 万勇, 惠洪森, 等. TiO2/Ti 电催化膜电极的制备及其对盐酸四环素废水的处理[J]. 天津工业大学学报, 2021, 40(2): 8-13.
[23] Halim J, Cook K M, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)[J]. Appl Surf Sci, 2016, 362: 406-417.
[24] Huang Y, Yan H J, Tong Y J. Electrocatalytic determination of reduced glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode[J]. J Electroanal Chem, 2015, 743: 25-30.
[25] Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chem Rev, 2014, 114(23): 11828-11862.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号