陶瓷膜在透平油脱水中的应用研究
作者:张凯滨,罗 平,柯 威,范益群
单位: 1 南京工业大学环境科学与工程学院,南京 211816;2 南京市膜材料产业技术研究院,南京 211816
关键词: 陶瓷膜;透平油;脱水
出版年,卷(期):页码: 2023,43(3):116-122

摘要:
 水是透平油使用过程中常见且最主要的污染物质。由于透平油黏度较大且油中水分含量标准要求较高,同时膜分离技术应用于透平油乳液分离时水易堵塞膜孔,增加了油-水分离的难度。本文采用表面疏水改性陶瓷膜对含微量水分的透平油进行油-水分离,考察跨膜压差、膜面流速、油液温度和油中水分含量对陶瓷膜的渗透及截留性能的影响。结果表明,提高跨膜压差和油液温度可以显著提高透平油乳液的膜渗透通量;膜面流速增大未对膜渗透率和水分截留效果产生影响;对于不同含水率的透平油,膜渗透通量随着含水率的增加逐渐降低。在跨膜压差0.3 MPa,膜面流速1 m/s,油温50 ℃的优化条件下,100 nm疏水陶瓷膜表现出长期运行稳定性,分离所得透平油中水分含量在40 μg/g左右,远低于行业标准要求的最高含水量。
 Water is the most common and dominant contaminant in the use of turbine oil. Due to the high viscosity of turbine oil and the high standard requirement of water content in oil, it increases the difficulty of oil-water separation, while membrane separation technology is applied to turbine oil emulsion separation, water tends to block the membrane pores, reducing the efficiency of oil-water separation. The modified ceramic membrane with the hydrophobic surface was used for the oil-water separation of aqueous turbine oil. The effects of transmembrane pressure, cross-flow velocity, oil temperature, and water content on permeability and rejection performance were investigated. The results show that: increasing the transmembrane pressure and oil temperature can significantly improve the membrane permeation flux of turbine oil, the cross-flow velocity at the membrane surface did not affect the membrane permeability and water rejection performance, the membrane permeability flux decreased gradually with the higher water content of the turbine oil. The 100 nm hydrophobic ceramic membrane exhibited better permeation and retention performance and long-term operational stability at optimized conditions of 0.3 MPa transmembrane pressure difference, 1 m/s membrane cross-flow velocity, and 50℃ oil temperature. The water content of the separated turbine oil is around 40 μg/g, well below the maximum required by industry standards.
张凯滨(1999-),男,安徽省淮北市人,硕士研究生,研究方向为陶瓷膜材料及应用,E-mail:zykz061325@ 163.com

参考文献:
 [1] 莫显威. 对汽轮机透平油带水原因及对策探讨[J]. 机电信息, 2011(6): 91-93.
[2] Zhao S, Tie L, Guo Z, et al. Water deteriorates lubricating oils: removal of water in lubricating oils using a robust superhydrophobic membrane[J]. Nanoscale, 2020, 12(21): 11703-11710.
[3] Yano A, Watanabe S, Miyazaki Y, et al. Study on sludge formation during the oxidation process of turbine oils[J]. Tribology Transactions, 2004, 47(1): 111-122.
[4] Needelman W M, Barris M A, Lavallee G L, et al. Contamination control for wind turbine gearboxes[J]. Power Engineering, 2009, 113(11): 112.
[5] Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants[J]. Therm Eng, 2017, 64: 83-96.
[6] 全国电气化学标准化技术委员会. GB/T 7596—2017, 电厂运行中矿物涡轮机油质量[S]. 北京: 中国标准出版社, 2017.
[7] Li Y, Cao L, Hu D, et al. Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel[J]. Sep Purif Technol, 2017, 176: 313-322.
[8] Li X, Yang Z, Peng Y, et al. Wood-inspired compressible superhydrophilic sponge for efficient removal of micron-sized water droplets from viscous oils[J]. ACS Appl Mater Interfaces, 2022, 14(9): 11789-11802.
[9] Huang H, Zhu C, Zhang W, et al. Design and analysis of the multifunctional oil-injection equipment for deep-sea hydraulic systems[J]. IEEE Access, 2020, 8: 143679-143691.
[10] Wei Y, Xie Z, Qi H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation[J]. J Membr Sci, 2020, 601: 117842.
[11] Widodo S, Ariono D, Khoiruddin K, et al. Recent advances in waste lube oils processing technologies[J]. Environmental Progress & Sustainable Energy, 2018, 37(6): 1867-1881.
[12] Usman J, Othman M H D, Ismail A F, et al. An overview of superhydrophobic ceramic membrane surface modification for oil-water separation[J]. J Mater Res, 2021, 12: 643-667.
[13] Zhao L, Li R, Xu R, et al. Antifouling slippery liquid-infused membrane for separation of water-in-oil emulsions[J]. J Membr Sci, 2020, 611: 118289.
[14] Mynin V N, Smirnova E B, Katsereva O V, et al. Treatment and regeneration of used lube oils with inorganic membranes[J]. Chem Technol Fuels Oils, 2004, 40(5): 345-350.
[15] Tang H, Hao L, Chen J, et al. Surface modification to fabricate superhydrophobic and superoleophilic alumina membranes for oil/water separation[J]. Energy & Fuels, 2018, 32(3): 3627-3636.
[16] Gao N, Fan Y, Quan X, et al. Modified ceramic membranes for low fouling separation of water-in-oil emulsions[J]. J Membr Sci, 2016, 51(13): 6379-6388.
[17] Ding D, Mao H, Chen X, et al. Atwater superoleophobic-atoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. J Membr Sci, 2018, 565: 303-310.
[18] 李梅, 高能文, 范益群. 疏水陶瓷膜脱除油中水分的研究[J]. 膜科学与技术, 2012, 32(3): 86-90.
[19] Gao N, Ke W, Fan Y, et al. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements[J]. Appl Surf Sci, 2013, 283: 863-870.
[20] Gao N, Li M, Jing W, et al. Improving the filtration performance of ZrO? membrane in non-polar organic solvents by surface hydrophobic modification[J]. J Membr Sci, 2011, 375(1/2): 276-283.
[21] 胡剑安, 唐红艳, 郭玉海. 疏水性陶瓷复合膜的制备与油水分离性能研究[J]. 水处理技术, 2017, 43(11): 30-33.
[22] 曾坚贤, 郑立锋, 叶红齐, 等. 陶瓷膜净化溶剂油的实验研究[J]. 过程工程学报, 2010, 10(3): 488-492.
[23] 钟道悦. 无机陶瓷膜在废润滑油再生中的应用研究[D]. 广州:华南理工大学, 2013.
[24] Boiko A Y. New methods and technique for turbine oil cleaning[J]. Chemical and Petroleum Engineering, 2005, 41(11): 659-664.
[25] Kocherginsky N M, Tan C L, Lu W F. Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane[J]. J Membr Sci, 2003, 220(1): 117-128.
[26] Wu J C S, Lee E. Ultrafiltration of soybean oil/hexane extract by porous ceramic membranes[J]. J Membr Sci, 1999, 154(2): 251-259.
[27] Lobo A, Cambiella Á, Benito J M, et al. Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity[J]. J Membr Sci, 2006, 278(1): 328-334.
[28] Chen L, Feng Q, Huang S, et al. A grafted-liquid lubrication strategy to enhance membrane permeability in viscous liquid separation[J]. J Membr Sci, 2020, 610: 118240.
[29] Yang K, Sun X, Zeng X, et al. Research on influence of water content to the measurement of wear particle concentration in turbine oil online monitoring simulation[J]. Wear, 2017, 376/377: 1222-1226.
[30] 范益群, 邢卫红. 陶瓷膜表面性质研究进展[J]. 膜科学与技术, 2013, 33(5): 1-7.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号