聚乙烯亚胺在界面聚合法制备纳滤膜中的应用
作者:郑力玮,王 昊,李 悦,郭世伟,苑春刚,罗建泉
单位: 1 华北电力大学 环境科学与工程系,河北 保定 071000;2 生化工程国家重点实验室,北京 100190;3 中国科学院 过程工程研究所,北京 100190;4 中国科学院大学,北京 100190
关键词: 界面聚合;荷正电荷纳滤膜;疏松纳滤;镁锂分离;重金属脱除
出版年,卷(期):页码: 2023,43(3):158-166

摘要:
 纳滤是一种介于超滤与反渗透之间的膜分离技术,具有操作压力低、无相变、分离效率高及运行成本低等优点。基于聚乙烯亚胺(PEI)和界面聚合方法制备的新型纳滤膜具有较强的正电荷(对阳离子更高的截留率)、较宽的孔径调节范围等优势,日益成为研究的热点。本文对近年来PEI在界面聚合法制备纳滤膜中的应用研究进行归纳,主要包括PEI作为水相单体、用于基膜改性、作为后处理剂等,讨论了目前该领域存在的问题,并对未来研究方向进行了展望,为推动PEI基纳滤膜的研究提供参考。
  Nanofiltration is a kind of membrane technology between ultrafiltration and reverse osmosis. It has the advantages of low operating pressure, no phase transition, high separation efficiency and low operating cost. Interfacial polymerization is the dominating method to prepare nanofiltration membranes. Compared with the polypiperazine-based nanofiltration membranes which are widely used at present, the novel polyethylenimine (PEI) based nanofiltration membranes prepared by interfacial polymerization have the advantages of strong positive charge (higher cation retention rate), good acid resistance and wide pore size adjustment range, which have increasingly become the research hotspot. In this paper, the progress of preparation of the nanofiltration membrane based on PEI and interfacial polymerization in recent years was reviewed, mainly including the PEI as aqueous monomer or additive, modifier for base membrane, post-treatment agent. Moreover, the existing problems in this field were discussed, and the future research directions were prospected, providing reference for the future research of PEI based nanofiltration membrane. 
郑力玮(1997-),男,山东日照人,硕士研究生,研究方向为正电荷纳滤膜制备和应用,wave88531@163.com.

参考文献:
 [1] 郭世伟, 郑力玮, 罗建泉, et al. 纳滤膜在高盐废水处理中的应用研究进展[J]. 膜科学与技术, 2022, 42(02): 175-182.
[2] Zhang N, Jiang B, Zhang L, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation[J]. Chemical Engineering Journal, 2019, 359: 1442-1452.
[3] 黑云皓, 项军, 田桂英, et al. 聚乙烯亚胺改性多壁碳纳米管用于制备高通量复合纳滤膜[J]. 膜科学与技术, 2021, 41(05): 87-96.
[4] Fang W, Shi L, Wang R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J]. Journal of Membrane Science, 2013, 430: 129-139.
[5] Zhao F Y, Mi Y F, An Q F, et al. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane[J]. PROGRESS IN CHEMISTRY, 2016, 28(4): 541-551.
[6] Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li (+) and Mg2+ from brine with high Mg2+/Li+ ratio[J]. DESALINATION, 2019, 449: 57-68.
[7] Trivedi J S, Bhalani D V, Bhadu G R, et al. Multifunctional amines enable the formation of polyamide nanofilm composite ultrafiltration and nanofiltration membranes with modulated charge and performance[J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6(41): 20242-20253.
[8] Wei X Z, Hong J L, Zhu S S, et al. Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine[J]. JOURNAL OF MATERIALS SCIENCE, 2017, 52(19): 11701-11714.
[9] Wu D, Huang Y, Yu S, et al. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride[J]. Journal of Membrane Science, 2014, 472: 141-153.
[10] Xiang J, Li H, Hei Y, et al. Preparation of highly permeable electropositive nanofiltration membranes using quaternized polyethyleneimine for dye wastewater treatment[J]. Journal of Water Process Engineering, 2022, 48: 102831.
[11] Ding J C, Wu H Q, Wu P Y. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation[J]. CHEMICAL ENGINEERING JOURNAL, 2020, 396: 125199.
[12] Ma T, Su Y, Li Y, et al. Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer[J]. JOURNAL OF MEMBRANE SCIENCE, 2016, 503: 101-109.
[13] Qian Y W, Wu H M, Sun S P, et al. Perfluoro-functionalized polyethyleneimine that enhances antifouling property of nanofiltration membranes[J]. JOURNAL OF MEMBRANE SCIENCE, 2020, 611: 118286.
[14] Bera A, Trivedi J S, Jewrajka S K, et al. In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethyleniminedextran conjugate[J]. JOURNAL OF MEMBRANE SCIENCE, 2016, 519: 64-76.
[15] Eslami A B, Peyravi M, Jahanshahi M, et al. Polysulfonamide coating layer polymerized by1,3-disulfonyl chloride and polyethylenimine to achieve acid resistant TFC membranes[J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 155: 172-179.
[16] Yu L, Li K L, Zhang Y, et al. Improved permeability of tight acid resistant nanofiltration membrane via citric acid post-treatment[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 648: 120381.
[17] Akbari A, Solymani H, Rostami S M M. Preparation and characterization of a novel positively charged nanofiltration membrane based on polysulfone[J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132(22): 4361–4369.
[18] Li P F, Lan H L, Chen K, et al. Novel high-flux positively charged aliphatic polyamide nanofiltration membrane for selective removal of heavy metals[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 280: 119949.
[19] You M, Li W Q, Pan Y, et al. Preparation and characterization of antibacterial polyamine-based cyclophosphazene nanofiltration membranes[J]. JOURNAL OF MEMBRANE SCIENCE, 2019, 592: 117371.
[20] Zhang Y, Wan Y, Li Y, et al. Thin-film composite nanofiltration membrane based on polyurea for extreme pH condition[J]. Journal of Membrane Science, 2021, 635: 119472.
[21] Liu H Q, Xia J Z, Cui K J, et al. Fabrication of high-performance pervaporation membrane for sulfuric acid recovery via interfacial polymerization[J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 624: 119108.
[22] Bai J, Lai W, Gong L L, et al. Ionic liquid regulated interfacial polymerization process to improve acid-resistant nanofiltration membrane permeance[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 641: 119882.
[23] Yu L, Zhang Y, Xu L, et al. One step prepared Janus acid-resistant nanofiltration membranes with opposite surface charges for acidic wastewater treatment[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 250: 117245.
[24] Zhao Y, Li N, Shi J, et al. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions[J]. Separation and Purification Technology, 2022, 286: 120419.
[25] Li H W, Wang Y, Li T Y, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. CHEMICAL ENGINEERING JOURNAL, 2022, 438: 135658.
[26] Cheng X Q, Qin Y, Ye Y Y, et al. Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment[J]. CHEMICAL ENGINEERING JOURNAL, 2021, 417.
[27] Fang W, Shi L, Wang R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. JOURNAL OF MEMBRANE SCIENCE, 2014, 468: 52-61.
[28] Goh K S, Chong J Y, Chen Y, et al. Thin-film composite hollow fibre membrane for low pressure organic solvent nanofiltration[J]. JOURNAL OF MEMBRANE SCIENCE, 2020, 597: 117760.
[29] Zhao Y Y, Tong X, Chen Y S. Fit-for-Purpose Design of Nanofiltration Membranes for Simultaneous Nutrient Recovery and Micropollutant Removal[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55(5): 3352-3361.
[30] Kebria M R S, Jahanshahi M, Rahimpour A. SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions[J]. DESALINATION, 2015, 367: 255-264.
[31] Bai X, Zhang Y, Wang H, et al. Study on the modification of positively charged composite nanofiltration membrane by TiO2 nanoparticles[J]. DESALINATION, 2013, 313: 57-65.
[32] Yuan Z J, Wu X L, Jiang Y J, et al. Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance[J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 549: 1-11.
[33] Wang Z Y, Xie F, Ding H Z, et al. Effects of locations of cellulose nanofibers in membrane on the performance of positively charged membranes[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 652: 120464.
[34] Zhang H Z, Sun J Y, Zhang Z L, et al. Hybridly charged NF membranes with MOF incorporated for removing low-concentration surfactants[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 258: 118069.
[35] Zhao F Y, Ji Y L, Weng X D, et al. High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes[J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8(10): 6693-6700.
[36] Song Y, Wang Y, Zhang N, et al. Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants[J]. Journal of Membrane Science, 2021, 630: 119332.
[37] Chen L, Zhou C, Tan L, et al. Enhancement of compatibility between covalent organic framework and polyamide membrane via an interfacial bridging method: Toward highly efficient water purification[J]. Journal of Membrane Science, 2022, 656: 120590.
[38] Wang X, Wang H X, Wang Y M, et al. Hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination[J]. DESALINATION, 2019, 451: 209-218.
[39] Yang C, Li Y, Long M Y, et al. Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 642: 119944.
[40] Ang M, Tang C L, De Guzman M R, et al. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment[J]. DESALINATION, 2020, 481: 114352.
[41] 张林, 林赛赛, 魏平, et al. 4-二甲氨基吡啶催化的界面聚合法制备超支化聚乙烯亚胺复合膜[J]. 催化学报, 2012, 33(10): 1730-1735.
[42] Wang M, Dong W J, Guo Y L, et al. Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J]. DESALINATION, 2021, 513: 114836.
[43] Zhang N, Huang Z, Yang N, et al. Nanofiltration membrane via EGCG-PEI co-deposition followed by cross-linking on microporous PTFE substrates for desalination[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 232: 115964.
[44] Yang X, Du Y, Zhang X, et al. Nanofiltration Membrane with a Mussel-Inspired Interlayer for Improved Permeation Performance[J]. LANGMUIR, 2017, 33(9): 2318-2324.
[45] Wang Y, Zhao S, Zha Z, et al. Host-guest nanofiltration membranes having amino-complexed cucurbituril supramolecular channel for monovalent/divalent salts separation[J]. DESALINATION, 2022, 527: 115582.
[46] Zheng D Y, Hua D, Cheng X, et al. Polyamide composite membranes for enhanced organic solvent nanofiltration performance by metal ions assisted interfacial polymerization method[J]. AICHE JOURNAL, 69(2): e17896.
[47] Xu Y, Peng H W, Luo H, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. DESALINATION, 2022, 526: 115519.
[48] Zhou M Y, Chen J C, Zhou W J, et al. Developing composite nanofiltration membranes with highly stable antifouling property based on hydrophilic roughness[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 256: 117799.
[49] Jin P R, Mattelaer V, Yuan S S, et al. Hydrogel supported positively charged ultrathin polyamide layer with antimicrobial properties via Ag modification[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 284: 120295.
[50] Gao J, Wang K Y, Chung T-S. Design of nanofiltration (NF) hollow fiber membranes made from functionalized bore fluids containing polyethyleneimine (PEI) for heavy metal removal[J]. JOURNAL OF MEMBRANE SCIENCE, 2020, 603: 118022.
[51] Cao Y, Wan Y, Chen C, et al. Preparation of acid-resistant nanofiltration membrane with dually charged separation layer for enhanced salts removal[J]. Separation and Purification Technology, 2022, 292: 120974.
[52] Li Y H, Wang S H, Wu W Y, et al. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 659: 120809.
[53] Wu D H, Martin J, Du J R, et al. Effects of chlorine exposure on nanofiltration performance of polyamide membranes[J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 487: 256-270.
[54] Ng Z C, Lau W J, Lai G S, et al. Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination[J]. DESALINATION, 2022, 526: 115502.
[55] Sun H X, Liu J H, Luo X B, et al. Fabrication of thin-film composite polyamide nanofiltration membrane based on polyphenol intermediate layer with enhanced desalination performance[J]. DESALINATION, 2020, 488: 114525.
[56] Liang Y Z, Li C, Li S X, et al. Graphene quantum dots (GQDs)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofiltration (OSN) membranes[J]. CHEMICAL ENGINEERING JOURNAL, 2020, 380: 122462.
[57] Chen Y H, Sun H X, Tang S H, et al. Nanofiltration membranes with enhanced performance by constructing an interlayer integrated with dextran nanoparticles and polyethyleneimine coating[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 654: 120537.
[58] Guo Z Q, Wang H L, Wang L, et al. Polyamide thin-film nanocomposite membrane containing star-shaped ZIF-8 with enhanced water permeance and PPCPs removal[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 292: 120886.
[59] Shen Q, Xu S J, Dong Z Q, et al. Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water[J]. JOURNAL OF MEMBRANE SCIENCE, 2020, 610: 118220.
[60] Lu D, Ma T, Lin S, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li plus permselectivity over Mg2+[J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 635: 119504.
[61] Yang Z, Fang W X, Wang Z Y, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 620: 118862.
[62] Qi Y W, Zhu L F, Shen X, et al. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 222: 117-124.
[63] Deng L Y, Li S L, Qin Y W, et al. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification[J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 619: 118564.
[64] Song J L, Xu D L, Luo X S, et al. In-situ assembled amino-quinone network of nanofiltration membrane for simultaneously enhanced trace organic contaminants separation and antifouling properties[J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 661: 120891.
[65] Shao W Y, Liu C R, Ma H J, et al. Fabrication of pH-sensitive thin-film nanocomposite nanofiltration membranes with enhanced performance by incorporating amine-functionalized graphene oxide[J]. APPLIED SURFACE SCIENCE, 2019, 487: 1209-1221.
[72] Ren Y, Qi P, Wan Y, et al. Planting anion channels in a negatively charged polyamide layer for highly selective nanofiltration separation[J]. Environmental Science & Technology, 2022, 56(24): 18018-18029.
[73] Wang J, Ren Y, Zhang H, et al. Targeted modification of polyamide nanofiltration membrane for efficient separation of monosaccharides and monovalent salt[J]. Journal of Membrane Science, 2021, 628: 119250.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号