MXene层状膜负载低共熔溶剂及气体分离性能的研究
作者:武丹,贾佑雨,李奕帆
单位: 郑州大学 化工学院,郑州450001
关键词: MXene层状膜 低共熔溶剂 气体分离
出版年,卷(期):页码: 2023,43(4):10-20

摘要:
 二维层状膜在气体分离中的高效传递归因于连续规整的层间通道,然而纳米片的局部低效率堆积在放大制膜时难以避免,将导致缺陷产生和气体分离效率的严重下降。基于此,制备了一系列低共熔溶剂插层的磺化MXene层状膜。以亲CO2的磺化MXene二维层状膜作为骨架,通过在二维通道内搭载低共熔溶剂来降低层间缺陷的产生。所制备的低共熔溶剂插层的MXene层状膜在湿态下具有良好的二氧化碳渗透性和选择性,其中,T@MX/ChCl:MEA 和 T@MX/TEPA.Cl:EG 在湿态下渗透速率分别达到了513 GPU和493 GPU,选择性为191.4和204.8。本研究旨在探究“水促进CO2传递”机制在载液MXene二维通道内的可行性,同时,也为以MXene为基础的膜设计和制造提供了一种新的策略。
 The continuous and regular interlayer channels are attributed with facilitating the efficient transfer of two-dimensional lamellar membranes in gas separation. However, the low efficiency
 of local nanosheet packing is inevitable, which can significantly lower the gas separation performance. Accordingly, a number of deep eutectic solvent intercalated sulfonated MXene lamellar membranes were created. By carrying a deep eutectic solvent in the 2D channel, interlayer defects were prevented by using a sulfonated MXene membrane as the skeleton. The deep eutectic solvent interlayer-prepared MXene lamellar membranes have good CO2 permeance and selectivity in wet state(CO2/N2 selectivity of 191.4 and 204.8 and CO2 permeance of 513 and 493 GPU for
 T@MX/ChCl:MEA and T@MX/TEPA.Cl:EG, respectively). This study is expected to evaluate
 the feasibility of the "water-facilitated CO2 transfer" mechanism in the two-dimensional MXene channel and to propose a fresh approach to the development of MXene-based membranes.
武 丹(1997-),女,河南省新乡市人,硕士研究生,主要研究方向为膜分离技术,E-mail:wudan9701@163.cm.

参考文献:
 [1] 宋红玲, 彭媛, 杨维慎. 二维纳米片用于快速高效膜法气体分离[J]. 高等学校化学学报, 2021, 42(1): 248-267.  
[2] 贺磊, 鲁云华, 张兼华,等. 具有交联结构的热重排聚合物膜的制备及气体分离性能[J]. 高分子材料科学与工程, 2022, 38(5): 1-8.  
[3] 景宏, 臧毅华, 罗林军,等. 改性石墨烯材料掺杂聚酰亚胺制备混合基质膜分离CO2/N2[J]. 膜科学与技术, 2021, 41(3): 98-104. 
[4] 段翠佳, 曹义鸣, 介兴明,等. 金属有机骨架材料/聚酰亚胺混合基质膜的制备及气体分离性能[J]. 高等学校化学学报, 2014, 35(7): 1584-1589. 
[5] 程荣,姜培文,夏锦程,等.共价有机骨架材料在膜分离领域的应用进展[J].膜科学与技术, 2022,42(5):154-163.
[6] 吴云琴,郑璐康,陈琦,等. 以开孔的二维MFI纳米片为构筑单元制备沸石片膜[J].无机化学学报, 2019, 35(1): 89-94.
[7] Qu K, Dai L, Xia Y, et al. Self-crosslinked MXene hollow fiber membranes for H2/CO2 separation [J]. J Membr Sci, 2021, 638: 119669. 
[8] Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nat Commun, 2018, 9(155).
[9] Shen J, Liu G, Han Y, Jin W. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nat Rev Mater, 2021, 6(4): 294-312.
[10] Geim A, Grigorieva I. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.  
[11] Koltonow A, Huang J. Two-dimensional nanofluidics[J]. Science, 2016, 351(6280): 1395-1396.  
[12] Shen J, Liu G, Ji Y, et al. 2D MXene Nanofilms with Tunable Gas Transport Channels[J]. Adv. Funct. Mater, 2018, 28(31): 1801511.
[13] Luo W, Niu Z, Mu P, et al. MXene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4[J]. Colloid surface A, 2022, 640: 128481.  
[14] Zheng S, Zhang C, Zhou F, et al. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density[J]. J mater chem A, 2019,7(16): 9478-9485. 
[15] Wang Q, Fan Y, Wu C, et al. Palladium-intercalated MXene membrane for efficient separation of H2/CO2: Combined experimental and modeling work[J]. J Membr Sci, 2022, 653: 120533.
[16] Ying W, Cai J, Zhou K, et al. Ionic Liquid Selectively Facilitates CO2 Transport through Graphene Oxide Membrane[J]. ACS Nano, 2018 ,12 (6): 5385-5393.
[17] Chen D, Ying W, Guo Y, et al. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane[J]. ACS Appl. Mater. Interfaces, 2017, 9, 44251−44257.
[18] Yuan Z, Liu H, Yong W, et al. Status and advances of deep eutectic solvents for metal separation and recovery[J]. Green chem, 2022, 24(5): 1895-1929.
[19] Zhang Q, Vigier K, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem. Soc. Rev, 2012, 41(21): 7108-7146.  
[20] Sarmad S, Mikkola J, Ji X. Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents[J]. Chemsuschem, 2017, 10(2): 324-352.  
[21] Sarmad S, Xie Y, Mikkola J, et al. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity[J]. New J chem, 2017, 41(1): 290-301.
[22] Jia Y, Shi F, Li H, et al. Facile Ionization of the Nanochannels of Lamellar Membranes for Stable Ionic Liquid Immobilization and Efficient CO2 Separation[J]. ACS Nano, 2022, 16(9): 14379–14389.
[23] Lu Z, Wei Y, Deng J, et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 2019, 13(9): 10535-10544.
[24] Chen W, Xue Z, Wang J, et al, Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Phys-Chim Sin, 2018, 34(8): 904-911.
[25] Yusof R, Abdulmalek E, Sirat K, et al, Tetrabutylammonium Bromide (TBABr)-Based Deep Eutectic Solvents (DESs) and Their Physical Properties[J]. Molecules, 2014, 19(6): 8011-8026.
[26] Xu J, Wang Z, Qiao Z, et al, Post-combustion CO2 capture with membrane process: Practical membrane
performance and appropriate pressure[J]. J Membr Sci, 2019, 581: 195-213.
[27] Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95.
[28] Ying W, Cai J, Zhou K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393.
[29] Chen D, Wang W, Ying W, et al. CO2-philic WS2 laminated membranes with a nanoconfined 
ionic liquid[J]. J Mater Chem A, 2018, 6(34): 16566-16573.
[30] Chen D, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in 
laminated MoS2 membrane[J]. ACS Appl Mater Interfaces, 2017, 9(50): 44251-44257. 
[31] Ying W, Han B, Lin H, et al. Laminated mica nanosheets supported ionic liquid membrane 
for CO2 separation[J]. Nanotechnology, 2019, 30(38): 385705. 
[32] Deng Z, Wan T, Chen D, et al. Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation[J]. Small, 2020, 16(34): 2002699. 
[33] Ying W, Zhou Ke, Hou Q, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. J Mater Chem A, 2019, 7, 15062-15067. 
[34] Ying W, Hou Q, Chen D, et al. Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. J Mater Chem A, 2019, 7(16): 10041-10046. 
[35] Wan X, Zhang K, Wan T, et al. Graphene oxide constructed nano Newton's cradle for ultrafast and highly selective CO2 transport[J]. J Membr Sci, 2022, 652: 120475. 
[36] Wan X, Wang X, Wan T, et al. Bio-inspired ferromagnetic graphene oxide/magnetic ionic liquid membrane for highly efficient CO2 separation[J]. Appl Mater Today, 2021, 24:101164. 
[37] Wan X, Wan T, Cao C, et al. Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane[J]. Chem Eng J, 2021, 423: 130309. 
[38] Lin H, Gong K, Ying W, et al. CO2-philic separation membrane: deep eutectic solvent filled graphene oxide nanoslits[J]. Small, 2019, 15(49): 1904145.
[39] Luo W, Niu Z, Mu P, et al. MXene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4 [J]. Colloids Surfaces A, 2022, 640: 128481. 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号